
MPLibra: Complementing the Benefits of Classic
and Learning-based Multipath Congestion Control

Hebin Yu, Jiaqi Zheng, Zhuoxuan Du, Guihai Chen
State Key Laboratory for Novel Software Technology, Nanjing University, China

Abstract—Multipath TCP (MPTCP) is a burgeoning transport
protocol which enables the server to split the traffic across mul-
tiple network interfaces. Classic MPTCPs have good friendliness
and practicality such as relatively low overhead, but are hard to
achieve consistent high-throughput and adaptability, especially
for the ability of flexibly balancing congestion among differ-
ent paths. In contrast, learning-based MPTCPs can essentially
achieve consistent high-throughput and adaptability, but have
poor friendliness and practicality. In this paper, we proposed
MPLibra, a combined multipath congestion control framework
that can complement the advantages of classic MPTCPs and
learning-based MPTCPs. Extensive simulations on NS3 show
that MPLibra can achieve good performance and outperform
state-of-the-art MPTCPs under different network conditions.
MPLibra improves the throughput by 40.5% and reduces the
file download time by 47.7% compared with LIA, achieves good
friendliness and balances congestion timely.

I. INTRODUCTION

Smart mobile devices and high-performance servers are
increasingly equipped with multiple network interfaces to
improve throughput or provide additional backup path for
reliability. For example, mobile devices usually can use WiFi
and 4G simultaneously, while the servers in production data
centers usually take parallel paths to perform load balancing.
MPTCP [2], as a multipath transport protocol, splits the traffic
across multiple network interfaces, which was maintained by
IETF working group [10]. With the increasing popularity of
MPTCP [3], improving the multipath transmission perfor-
mance [35] [24] is put into the spotlight and the most important
one is designing novel congestion control algorithm.

Compared with single-path TCP, MPTCP has higher re-
quirements for the congestion control algorithms. The ob-
jective of MPTCP [29] is significantly different from TCP
and MPTCP aims to (1) improve throughput: an MPTCP
flow should achieve no less throughput than that a TCP flow
would achieve on the best of its paths; (2) do no harm:
an MPTCP flow should not aggressively harm other flows
in terms of throughput achieved; (3) balance congestion: an
MPTCP flow should shift traffic from the congested subpath
to the uncongested subpath as soon as possible.

Existing congestion control algorithm for MPTCP can be
divided into classic MPTCPs and learning-based MPTCPs, de-
pending on whether the rate adjustment is based on hard-wired
mapping decisions or machine intelligence. LIA [32], as a
representative of classic MPTCPs, couples the congestion win-
dows of all its subflows when increasing one subflow’s rate.

The objective aims to achieve the three goals mentioned above.
OLIA [19] further improves LIA in terms of pareto optimality
and friendliness. BALIA [27] points out that OLIA may hurt
adaptability and aims to strike a good balance between LIA
and OLIA. State-of-the-art classic MPTCPs always perform
fixed AIMD-based rate adjustment. Though good friendliness
and practicality offered, they are essentially hard to achieve
consistent high-throughput and adaptability, especially taking
the path diversity to mitigate the transient congestion. As for
the learning-based MPTCPs, due to the great potential to adapt
to changing network conditions, they have been applied to
congestion control algorithm to improve performance. Specif-
ically, online learning-based MPTCPs such as MPCC [11]
adjusts the sending rate based on the real-time feedback from
the networks but it suffers from slow convergence and high
overhead. The RL(Reinforcement Learning)-based MPTCPs
such as SmartCC [11] and DRL-CC [34] train models in
simulated networks and hope the well-trained models have
learnt the policies that can achieve consistent high-throughput.
However, they are still fraught with a series of practical
problems such as large variance of subpath delay, slow training
speed, inflexible decision model and poor friendliness. Hence,
existing learning-based MPTCPs are far from deployment in
practice.

In this paper, we propose MPLibra, a multipath congestion
control framework that combines the advantages of classic and
learning-based MPTCPs together. The RL-agent developed
in our framework can decoupledly make decisions for each
subflow with the objective of maximizing the subflow-level
benefits. At the same time, we use classic coupled MPTCP to
guarantee connection-level friendliness and the performance
lower bound. By simultaneously borrowing the wisdom of
both classic and learning-based MPTCPs, we can periodi-
cally obtain two candidate decisions, respectively. Our utility
function-based evaluation mechanism is used to select a more
proper one on the fly as the final rate.

Our first contribution is that we unveil the performance of
state-of-the-art classic and learning-based MPTCPs and sum-
marize the limitations on consistent high-throughput, friendli-
ness, adaptability and practicality. Specifically, We find that
learning-based MPTCPs achieves 43.8% higher throughput
and reduces the convergence time by 86.7% compared with
classic MPTCPs. However, The overhead of the learning-based
method is very high while the overhead of the classic methods
are almost negligible. Further more, learning-based MPTCPs978-1-6654-4131-5/21/$31.00 ©2021 IEEE

have problems on large variance of subpath delay, slow
training speed, inflexible decision model and poor friendliness.

Our second contribution is that, we are the first work to
complement the benefits of both learning-based and classic
MPTCPs. We present an unified multipath congestion control
framework — MPLibra, which mainly includes exploration,
evaluation and exploitation stage. During these three stages,
MPLibra can periodically select a more proper rate from
two candidate decisions derived from classic and learning-
based MPTCPs and can achieve consistent high-throughput,
adaptability, friendliness and practicality.

Our third contribution is a comprehensive performance
evaluation of MPLibra under a variety of scenarios. Extensive
NS3 simulations show that, compared with state-of-the-art,
MPLibra can (i) improve the throughput by 40.5% and reduce
the file download time by 30.0%; (ii) Reduce the queuing delay
by 46.7%; (iii) guarantee both friendliness and convergence;
(iv) timely balance congestion among different subpaths.

II. MOTIVATION

In this section, we enumerate the limitations of the state-
of-the-art multipath congestion control methods in terms of
consistent high-throughput, friendliness, adaptability and prac-
ticality. The consistent high-throughput is a key motivation
to design MPTCP as it can essentially provide opportunities
to use more than one path. We hope a modern MPTCP
should maintain consistent high-throughput under a variety
of scenarios such as LTE, Wi-Fi and wired networks. The
friendliness requires that the MPTCP flow and the TCP flow
can obtain a fair share when they compete the bandwidth on
one bottleneck link. As for the adaptability, it indicates the
ability of balancing congestion among different paths and to
some extent can characterize the convergence speed when the
network changes happen. Practicality takes into account the
overhead and other practical issues especially when applying
learning-based methods to MPTCP.

MPTCP

(a) One MPTCP flow passes through
2-link networks

TCP

MPTCP

(b) One MPTCP flow and one TCP
flow compete on 1-link networks

Fig. 1: Evaluated 1- and 2-link networks.

Classic MPTCPs have good friendliness and practical-
ity, but are hard to achieve consistent high-throughput
and adaptability. Classic MPTCPs such as LIA [29], OLIA
[19], BALIA [27] and wVegas [5] can theoretically guarantee
connection-level friendliness. Besides, they has relatively high
practicality due to not involving the training complexities and
overhead compared with learning-based MPTCPs. Although
the good friendliness and practicality offered, they still cannot
achieve consistent high-throughput and good adaptability. We
first compared the average throughput of the state-of-the-art
MPTCPs and the used topology is shown in Fig.1(a). In this

(a) Throughput (b) Normalized Converge Time

Fig. 2: Performance Comparison

set of experiments, the capacities of two links are both set
to be 5 Mbps, the buffer size is an integer randomly chosen
from [10, 100] and the loss rate ranges from 0.0% to 0.5%.
Each data point is an average of at least 20 runs and the
flow duration is 100s. From Fig.2(a), we can observe that
classic MPTCPs fail to maintain consistent high-throughput.
The reason is that classic loss-based MPTCPs use loss as
an indicator of congestion, wrongly halving their congestion
windows due to non-congestion induced losses, and classic
delay-based MPTCPs such as wVegas fail to fully utilize the
link capacity since the delay estimation may be not accurate
enough especially in the presence of packet losses [26].
What’s more, due to the friendliness concern, classic MPTCPs
increase the congestion window very slowly even though a lot
of vacant capacity is available and no competing flows exist.
Specifically, we perform an experiment with a representative
MPTCP — LIA — to show the limitations on time-varying
link capacities. Initially, the capacities of two links are 4 Mbps,
which are last for 70s. Right then, they increase simultaneously
to 8 Mbps and last for 70s again. Finally the capacities of
two links decrease to 4 Mbps. According to Fig. 3, we can
observe the limited adaptability: from 70s to 100s, the second
subflow takes about 30s to fully utilize the link capacity. When
the capacity halves at 140s, it also takes 20s to converge.
This is because, in the design of LIA, a larger congestion
window for one subflow significantly slows down the increase
of that for the other subflow, leading to the limited adaptability.
We further measure the convergence time for state-of-the-art
MPTCPs. Here the convergence time of a MPTCP starts from
the rate adjustment and ends up with the steady state of both
subflows. Fig. 2(b) shows the normalized average converge
time which indicates that classic MPTCPs suffer from slow
convergence.

TABLE I: Overhead comparison

Scheme Avg. CPU Utilization Avg. Memory Utilization
Classic 1.6 % 0.1 %

RL-based 100 % 2.2 %
OL-based 88.7 % 10.1 %

Learning-based MPTCPs can essentially achieve consistent
high-throughput and adaptability, but have poor friendli-
ness and practicality. Current learning-based MPTCPs can
be broadly divided into two categories: online learning (OL)-
based and reinforcement learning (RL)-based MPTCP. The
OL-based method MPCC [11] timely calculates the gradient of

0 20 40 60 80 100 120 140 160 180 200
Time / s

0

2

4

6

8

10

Th
ro

ug
hp

ut
/M

bp
s

subflow 1 subflow 2

Fig. 3: Illustration of throughput variations for LIA with two
subpaths, where the capacities of two links increase from 4 to
8 Mbps at 70s and decrease from 8 to 4 Mbps at 140s.

Rl-based MPTCP
NewReno TCP

Subflow 1
Subflow 2

0 10 20 30 40 50 60 70
Time / s

6

0

1

2

3

4

5

Th
ro

ug
hp

ut
/M

bp
s

(a) Unfriendliness

0 200 400 600 800 1000 1200 1400
Time/min

0

1000

2000

3000

4000

5000

6000

Re
w

ar
d

TCP MPTCP

(b) Training comparison

Fig. 4: Issues when RL meets MPTCP

the utility function in an online manner and adjusts the sending
rate accordingly. However, the online adjustment strategy leads
to high overhead as shown in Tab. I and prolonged convergence
time as shown in Fig. 2(b) since it doesn’t have priori
knowledge and has to perform consistent fine-grained trials at
the beginning. Note that we measure the overhead of the Linux
kernel implementation of NewReno [9], Vivace [7] and Au-
rora [18] to represent the classic, OL-based and clean slate RL-
based MPTCPs, respectively. Unlike OL-based MPTCP, the
clean slate RL-based MPTCP trains an offlined RL-agent in
advance and then applies this experienced agent to the network
environments. Though the clean slate RL-based MPTCPs [22],
[34] can fastly converge to the steady state, they suffer from
a series of issues below. The most notorious one is poor
friendliness. We can observe from Fig. 4(a) that a clean slate
RL-based MPTCP with two subflows and a TCP NewReno
flow compete together, where the network topology is shown
in Fig. 1(b) and the reward function is set to be log

∑︀
𝑥𝑖

(𝑥𝑖 is the 𝑖𝑡ℎ subflow’s throughput). As for practicality, we
compare the efficiency of training a TCP RL agent and an
MPTCP RL agent through an experiment. We train an MPTCP
agent with two subflows and a TCP agent respectively. Both of
them use two hidden layers with 256 neurons and the training
algorithms used are DDPG [23]. Through tunning the link
parameters such as link capacity, delay and random loss rate,
we make the maximum accumulative rewards of these two
scenarios the same. As shown in Fig. 4(b), training an agent
of 2-subflow MPTCP is much slower than training a single-
path TCP agent. The reason is that though the action and

state space grow linearly with the increase of the number of
subflows, the mapping between the action and the state space
grows exponentially which makes it more complex for neuron
network to fit. What’s more, during the training procedure,
the subflows could influence each other and produce noises,
leading to increased training complexities. Furthermore, the
clean slate RL-based MPTCPs first train the models offline and
then deploy them online. This means that, once the number
of subflows for MPTCP in the trained model is fixed, they
are difficult to change. In general, MPTCP may have any
number of subflows and they can be activated and deactivated
dynamically due to the changed network conditions. To handle
this, LSTM [34] is used, while it makes the training process
more complicated and incurs more overhead. Furthermore, the
RTT among subpaths may have different orders of magnitude.
For example, the RTT of one subpath using WiFi is around
100-200 ms, while the RTT of another subpath using LTE is
around 40-60 ms. Existing clean slate RL-based MPTCPs set
one unified monitor interval(MI) for all subflows, one agent
for one MPTCP. A long MI will lose the flexibility to adapt to
the changing network conditions of the short RTT paths and
a short MI will be not sufficient enough to present the current
network status of the long RTT paths well.

The performance of classic and learning-based MPTCPs are
summarized in Tab. II. We find that they have complementary
advantages, which motivates us to design a combined multi-
path congestion control framework and promisingly overcome
the drawbacks above.

TABLE II: Performance comparisons

Goals Classic MPCC RL-based MPLibra
High-Throughput Poor Medium Good Good

Friendliness Good Good Poor Good
Adaptability Medium Medium Good Good
Practicality Good Poor Poor Good

III. OVERVIEW

MPLibra is an unified multipath congestion control frame-
work that outputs two candidate decisions from both clas-
sic and RL-based MPTCPs periodically. Through our utility
function-based evaluation mechanism, MPLibra can dynami-
cally pick one proper sending rate from two decisions.

Control Module 1

……

MPTCP Sender

RL-Agent
Utility-based

Evaluation module

Su
b

fl
o

w
 1

…
…

Su
b

fl
o

w
 N

Performance MetricRL states

𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑐𝑙𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒𝑐𝑙

𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑟𝑙𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒𝑟𝑙

𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑝𝑟𝑒𝑣𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒𝑝𝑟𝑒𝑣

Classic
Algorithm

Control Module N

Stage Manage Module

……

sending rate

sending rate

Fig. 5: MPLibra overview

Fig. 5 illustrates the main building blocks of an MPLi-
bra sender. Each subflow corresponds to an individual control
module. A control module consists of the RL-agent, classic
MPTCP algorithm, utility-based evaluation module and stage
manage module. Intuitively, the RL-agent periodically deter-
mines a candidate sending rate that maximizes the through-
put for one subflow, while the classic MPTCP algorithm
also outputs a candidate sending rate aiming to guarantee
friendliness. The utility-based evaluation module tries two
candidate sending rate one by one for a period, compares
the connection-level benefits and finally determines a proper
sending rate. Specifically, the utility-based evaluation module
calculates the utility value with respect to the real feedbacks
such as loss rate and latency gradient from the networks.
On one hand, MPLibra can rely on the well-trained RL
module to mitigate the misjudgment for the congestion signals,
maintain consistent high-throughput and quickly adapt to the
network condition changes. On the other hand, when there are
competing flows, increasing the rate unilaterally may lead to a
rapid increase in delay and loss rate, thus reducing the utility
value. In this case, the more prudent final rate given by the
classic algorithm considering friendliness is more likely to be
chosen. The stage manage module controls the stage transition
of one of MPLibra’s subflow according to the sending rate
generated by RL-agent and classic MPTCP algorithm and
the utility value obtained by utility module. Every subflow
starts with the exploration stage. In the exploration stage,
the RL method and the classic method respectively generate
actions based on the current network state. The evaluation
stage is used to evaluate the transient performance of the two
actions generated in last the phase and select a better one of
them. Based on the utility value of each action derived in the
evaluation phase, the exploitation stage can exploit the action
with the higher utility value.

The detailed mechanism of MPLibra’s stage transition can
be shown in Fig. 6. According to the RTT of the subflow,
MPLibra divides time into subflow moniter intervals (sMI).

Exploration stage Evaluation stage

Exploitation stage

Sending rate of classic method 𝒙𝒄𝒍 Sending rate derived by RL agent 𝒙𝒓𝒍 Last selected sending rate 𝒙𝒑𝒓𝒆𝒗

𝒙𝒑 𝒓𝒆𝒗

𝒙𝒄𝒍

𝒙𝒓𝒍

𝒙𝒑𝒓𝒆𝒗

𝒙 = argmax
𝒙=𝒙𝒄𝒍,𝒙𝒓𝒍

𝑢(𝑥) = 𝒙𝒄𝒍𝒙𝒄𝒍

𝒙𝒑 𝒓𝒆𝒗=𝒙𝒄𝒍

𝟏 𝑹𝑻𝑻

𝑵𝑹𝑻𝑻s(𝟑 ≥ 𝑵 ≥ 𝟎)

𝟏

𝟐
𝑹𝑻𝑻

𝟏

𝟐
𝑹𝑻𝑻

𝒙𝒄𝒍 − 𝒙𝒓𝒍
≥ θ

𝒙𝒄𝒍 − 𝒙𝒓𝒍 ≤ θ

Time

S
e
n

d
in

g
 r

a
te

S
e
n

d
in

g
 r

a
te

S
e
n

d
in

g
 r

a
te

Time Time

Time

ACKs ACKs

Fig. 6: Time-diagram of the Stage Manage Module in Fig.5

Exploration stage At the beginning of this stage, the sending
rate for each subflow is set to the base sending rate 𝑥𝑝𝑟𝑒𝑣

which is the finally determined rate in the last cycle. The
exploration lasts for an RTT and the classic MPTCP adjusts the

sending rate in a per-ACK manner during this period. At the
end of this period, we can obtain an 𝑥𝑐𝑙 derived by the classic
MPTCP, and at the same time, RL-agent generates its decision
𝑥𝑟𝑙 according to the statistics it gathered during this stage.
Then we compare the divergence of the 𝑥𝑐𝑙 and 𝑥𝑟𝑙, we enter
into the evaluation stage if |𝑥𝑐𝑙−𝑥𝑟𝑙| is bigger than a threshold
𝜃 which is set to 0.2 ×𝑥𝑝𝑟𝑒𝑣 as default. Otherwise, we set 𝑥𝑐𝑙

as the base sending rate and re-enter into the exploration stage.
Evaluation stage Once we are in the evaluation stage, it means
that the decision made by the RL agent and the classic MPTCP
are far apart. So we need to verify two candidate decisions and
select a better one. The evaluation stage is divided into two
evaluation intervals (EI) and each EI runs at a constant sending
rate. An EI is set to half of the RTT to better adapt to highly
changing networks and mitigating performance degradation
caused by wrong evaluated decisions. Once two candidate
rates are evaluated, how can we guarantee that two actions do
not interfere with each other since the first evaluated decision
might cause the queue buildups and lead to misjudge of the
second evaluated action? To mitigate the side effect of the
mutual influence, we set the sending rate to the smaller one
between 𝑥𝑐𝑙 and 𝑥𝑟𝑙 in the first EI, and in the second EI, the
sending rate is set to the larger one.
Exploitation stage In this stage, we firstly need to collects the
feedbacks corresponding to the enforcing sending rates in the
last evaluation stage and this lasts for two EIs. Meanwhile, we
exploit the sending rate 𝑥𝑝𝑟𝑒𝑣 determined in the last cycle. The
MPLibra calculates the utility value 𝑢(𝑥𝑐𝑙) and 𝑢(𝑥𝑟𝑙) from
𝑥𝑐𝑙, 𝑥𝑟𝑙 and the collected statistics (throughput, RTT, etc.).
Then we select the sending rate with a higher utility value as
a new base sending rate. We can exploit the new sending rate
for 𝑁 RTTs, where 𝑁 is a tradeoff between the flexibility and
stability and it can be an arbitrary integer between 0 and 3.

IV. MPLIBRA DESIGN

A. The RL-based module

State: The state is used to reflect the varying network con-
ditions. To well capture the changed network conditions,
we picked out several key network features according to
prior work [34] [18] [8] [1]: current sending rate, current
RTT and the minimum RTT, average loss rate of packets
and average delivery rate. Furthermore, to characterize the
network dynamics, we take the 10 most recent statistics in the
history to combine the final state.
Action: Once a new observation is available, the RL-agent
derives action to adjust the sending rate. For more fine-grained
control of the sending rate, we set the adjustments to be the
same as that of Orca [1]:

𝑐𝑤𝑛𝑑 = 2𝛼 × 𝑐𝑤𝑛𝑑𝑝𝑟𝑒𝑣, (−5 ≤ 𝛼 ≤ 5)

The corresponding sending rate should be:

𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 𝑐𝑤𝑛𝑑/𝑠𝑅𝑇𝑇

Training algorithm: The continuous setting of action space
doom the inapplicability of value-based reinforcement learning

methods such as DQN [25]. We select deep deterministic
policy gradient (DDPG) [23] to train our agent for each
subflow since it is an advanced actor-critic method [30].
Reward function: The design of reward function determines
the training objective and the direction of adjusting the strat-
egy. Hence, it should well present the expectation of our
RL-module: trying to maximize throughput and minimize
latency/loss. Accordingly, we set the reward function as

𝑅 =𝑤1 · 𝑥/𝑥𝑚𝑎𝑥 − 𝑤2 · 𝑑/𝑑𝑚𝑖𝑛 − 𝑤3 · 𝑙

where 𝑥 is the throughput, 𝑑 is the delay and 𝑙 is the loss rate
for each subflow. The parameters 𝑤1, 𝑤2, 𝑤3 are set to be 1,
1 and 10, respectively.

B. Underlying Classic MPTCP Module

The classic MPTCP algorithm can be either of the currently
proposed LIA [32], OLIA [19], BALIA [27] or other classic
MPTCP algorithms. We choose OLIA in our experiments
due to its advantages on friendliness and provable pareto
optimality. Each subflow enables OLIA’s control when it is in
the exploration stage and disable it when it is not. We claim
that the underlying classic algorithm module can be replaced
whenever there is a better choice. It’s worth noting that the
current scheme is designed for loss-based classic MPTCP
algorithms. We leave it to future work when the more advanced
classic MPTCP congestion control algorithms are proposed.

C. Compound algorithm

Algorithm: As described in algorithm 1, there is a daemon
that is always listening for subflows to join. If a new subflow
is activated, then it will initialize an RL module for this
subflow and starts a control loop for it. The control loop is
described in algorithm 2. For each control cycle, the subflow
does as follows. In the exploration stage, the sending rate
of the subflow is set to 𝑥𝑝𝑟𝑒𝑣 (line 5). Then, the sending
rate 𝑥𝑠

𝑟𝑙 and 𝑥𝑠
𝑐𝑙 are derived by the RL-agent and the classic

MPTCPs (lines 6-7). If the difference between 𝑥𝑠
𝑟𝑙 and 𝑥𝑠

𝑐𝑙

is greater than the threshold 𝑡ℎ1, the subflow proceeds to the
evaluation stage (lines 8-9).In the evaluation stage, subflow
first calculates utility value of the 𝑥𝑠

𝑝𝑟𝑒𝑣 and then tries the
sending rates by sending data at 𝑥𝑠

𝑟𝑙 and 𝑥𝑠
𝑐𝑙 , respectively

(lines 11-13). In the exploitation stage, it sets the sending rate
to 𝑥𝑠

𝑝𝑟𝑒𝑣 , calculates two utility values 𝑢(𝑥𝑟𝑙) and 𝑢(𝑥𝑐𝑙) and
set the 𝑥𝑠

𝑝𝑟𝑒𝑣 to the rate leading to the highest utility in the
first estimated RTTs (lines 16-20). Finally, subflow exploits
the newly chosen sending rate for N estimated RTTs (lines
21-22). Then it goes back to the exploration stage.
Utility-based Evaluation Module: The utility function essen-
tially determines the adjustment direction of the sending rate.
It aims at improving the throughput of the current connection
and guarantee fairness between connections at the connection-
level at the same time. Unlike the reward function used for
the training discussed above, the utility function serves as
an online decision to choose a better sending rate from two
candidate rates like MPCC [11]. Note that the friendliness a
special case of fairness. In this paper, we focus on friendliness

— a special fairness between MPTCP flows and TCP Reno
flows. Here, we will show how to achieve connection-level
utility-maximization and fairness simultaneously through the
design of subflow-level utility function. Consider a subflow
i of the MPTCP connection a, we take the sending rate of
connection a’s other subflows 𝑠 ̸= 𝑖 as constant 𝑡𝑎𝑠 . The utility
of the 𝑖𝑡ℎ subflow of connection 𝑎 should be:

𝑈𝑎
𝑖 = log(

∑︁
𝑠 ̸=𝑖

𝑡𝑎𝑠 + 𝑥𝑎
𝑖)− (

∑︁
𝑠 ̸=𝑖

𝑡𝑎𝑠 + 𝑥𝑎
𝑖) · (𝛽 · 𝐿𝑎

𝑖 + 𝛾 · 𝑑(𝑅𝑇𝑇𝑖)

𝑑𝑇
)

(1)
where the 𝐿𝑎

𝑖 and 𝑑(𝑅𝑇𝑇𝑖)
𝑑𝑇 is the loss rate and latency gradient

of the 𝑖𝑡ℎ subflow for the connection a. Here we set 𝛽 and
𝛾 to be a relatively large value (𝛽 = 10 and 𝛾 = 5) so that
the conservative sending rates will be more inclined to be
chosen when the sending rate reaches the capacity or the flow
is in a competing scenario. Next, we introduce lexicographic
max-min fairness [28], and then prove the friendliness and
convergence of MPLibra.

Algorithm 1: MPLibra
Input: the classic MPTCP 𝐶𝐶𝑐𝑙𝑎𝑠𝑠𝑖𝑐; the length of exploitation

stage 𝑁 ; the difference threshold of the decisions 𝑡ℎ1;
1 while a new subflow s is activated do
2 Initalize RL module 𝐶𝐶𝑟𝑙;
3 startControlLoop(𝑠, 𝐶𝐶𝑐𝑙𝑎𝑠𝑠𝑖𝑐, 𝐶𝐶𝑟𝑙, 𝑁, 𝑡ℎ1);

Algorithm 2: The control loop of each subflow
Input: subflow 𝑠; the classic MPTCP 𝐶𝐶𝑐𝑙𝑎𝑠𝑠𝑖𝑐; the RL module

𝐶𝐶𝑟𝑙; the length of exploitation stage 𝑁 ; the difference
threshold of the decisions 𝑡ℎ1;

1 for control cycle t of subflow s do
2 if subflow s is deactivated then
3 break

4 //Exploration stage
5 Initially set the sending rate 𝑥𝑠

𝑡 as 𝑥𝑝𝑟𝑒𝑣

6 𝑥𝑠
𝑟𝑙 = 𝑅𝐿 𝐴𝑔𝑒𝑛𝑡(𝐶𝐶𝑟𝑙, 𝑆𝑡)

7 𝑥𝑠
𝑐𝑙 = 𝐶𝑙𝑎𝑠𝑠𝑖𝑐 𝑀𝑃𝑇𝐶𝑃 (𝐶𝐶𝑐𝑙𝑎𝑠𝑠𝑖𝑐)

8 if |𝑥𝑠
𝑐𝑙 − 𝑥𝑠

𝑟𝑙| ≥ 𝑡ℎ1 then
9 Break, turn into the evaluation stage

10 Reenter Exploration stage
11 //Evaluation stage
12 Try a smaller rate between 𝑥𝑠

𝑟𝑙 and 𝑥𝑠
𝑐𝑙 first for one EI.

13 Try the remaining one then for another EI.
14 Collect the performance statistics, calculate utility value

𝑢(𝑥𝑠
𝑝𝑟𝑒𝑣)

15 Turn into the exploitation stage
16 //Exploitation stage
17 if In the first estimated RTT then
18 Send traffic with rate 𝑥𝑠

𝑝𝑟𝑒𝑣 .
19 Collect the performance statistics corresponding to 𝑥𝑐𝑙 and

𝑥𝑟𝑙 , respectively.
20 Calculate the utility value 𝑢(𝑥𝑠

𝑐𝑙), 𝑢(𝑥
𝑠
𝑟𝑙).

21 𝑥𝑠
𝑝𝑟𝑒𝑣 =
argmax𝑥𝑠

𝑝𝑟𝑒𝑣,𝑥
𝑠
𝑟𝑙

,𝑥𝑠
𝑐𝑙

{𝑢(𝑥𝑠
𝑝𝑟𝑒𝑣), 𝑢(𝑥

𝑠
𝑟𝑙), 𝑢(𝑥

𝑠
𝑐𝑙)}

22 for the time in the next N estimated RTTs do
23 Send traffic with rate 𝑥𝑠

𝑝𝑟𝑒𝑣 .

24 𝑡 = 𝑡+ 1

(a) Throughput variations (b) Congestion window size variations (c) RTT variations

Fig. 7: MPLibra’s behavior under step scenario

0 10 20 30 40 50 60 70 80 90100
Time / s

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
/M

bp
s

MPLibra
NewReno TCP

Subflow 1
Subflow 2

(a) MPLibra with two subflows com-
pete with one TCP Reno flow

0 10 20 30 40 50 60 70 80 90100
Time / s

0

1

2

3

4

5

6
Th

ro
ug

hp
ut

/M
bp

s
OLIA
NewReno TCP

Subflow 1
Subflow 2

(b) OLIA with two subflow compete
with one TCP Reno flow

Fig. 8: MPLibra and OLIA’s throughput variations under
competing scenarios

Lexicographic Max-Min Fairness (LMMF): Consider allo-
cating the bandwidth of several links to several flows, if an
allocation satisfying LMMF, then the bandwidth allocated to
the worst off connection, the second-to-worst connection, and
so on should all be maximized [11] [28].

Theorem 1. LMMF and Convergence: For any given net-
works with 𝑘 parallel links [11], 𝑛 MPLibra flows compete
with 𝑚 classic MPTCP flows and MPLibra can achieve
an unique equilibrium satisfying LMMF, where the classic
MPTCPs can be LIA, OLIA or BALIA.

The proof can be found in Appendix A. We have proved the
intra-protocol fairness between MPLibra flows and the inter-
protocol fairness between MPLibra flows and OLIA flows.
When the number of the subflows of OLIA or MPLibra flow
is 1, they automatically become a NewReno flow and a single
path version MPLibra, respectively. Therefore, this actually
covers the proof of MPLibra’s TCP-friendliness.

V. EVALUATION

We evaluate MPLibra with extensive simulations compared
with state-of-the-art MPTCPs.
Simulation Setup: Our experiments are based on Kheirkhah’s
published version [20] of NS3. Specifically, we develop the
RL-module of MPLibra in NS3 and implement a key interface
RLInteractModule() which is responsible for the inter-
action between the RL-module and socket module. At the same
time, RLInteractModule() periodically enforces the final
sending rate to the socket module. The RL-module is trained
on a variety of scenarios to make it more general. In addition,
we set the numbers of background TCP flows in the bottleneck
link to be a random number during the training procedure.

Benchmark MPTCPs: We compare MPLibra with state-of-
the-art classic and learning-based MPTCPs. We implement
coupled classic MPTCPs such as LIA [32], OLIA [19],
BALIA [27] and wVegas [5] according to standard RFC doc-
uments [29] [19] [31] [33]. We also implement an uncoupled
classic method by using single path reno for each subflow.
As for learning-based MPTCPs, we use online learning-based
MPCC [11] and the clean slate RL-based method as two
representative benchmarks. For MPCC, We modified some of
the hyperparameters to make MPCC in the NS3 for better per-
formance. For clean-slate RL-based method, We implemented
a simplified one whose agent can jointly control all subflows
that belongs to one MPTCP connection.
Throughput variations under step scenarios. We first em-
ulate a network shown in Fig. 1(a), where the link bandwidth
changes dynamically as shown in Fig. 7(a). The blue shaded
area indicates the link capacity. Fig. 7 details the throughput,
cWnd(congestion window) and RTT variations for MPLibra.
At the 30s, the capacity changes to 8 Mbps and accordingly
MPLibra increases its sending rate rapidly to grab the available
bandwidth. The reason is that the RL-module of MPLibra can
see the delay reduction and encourage the rate-increase be-
havior. At the 60s, the capacity is suddenly halved and this
leads to the transient queue accumulation. We observe that the
cWnd decreases from about 80 packets to 50 packets shown
in Fig. 7(b), which means that the RL-agent observes the
delay increase and halves its cWnd. However, classic MPTCP
module blindly increase its sending rate until the packet loss
happens and thus leads to high latency. Finally, the rate deci-
sion from RL-agent is selected with a higher reward through
our utility-based evaluation mechanism. This demonstrates that
MPLibra can achieve advantages complementary since a well-
trained RL-agent module can always correct the behavior of
the classic MPTCP module.
Throughput variations under competing scenarios. The
network topology under competing scenarios is shown in
Fig. 1(b), where the link capacity is 5 Mbps. From Fig. 8,
we can observe that the average throughput of MPLibra flow
and TCP Reno flow is 2.56 Mbps and 2.23 Mbps, while that of
OLIA flow and TCP Reno flow is 2.35 Mbps and 2.22 Mbps,
respectively. MPLibra improves the throughput of OLIA by
8.9% and simultaneously does not hurt the throughput of
TCP Reno flow. With the help of the classic MPTCP module,
MPLibra flow and the TCP Reno flow can converge to a fair
steady state in around 20 seconds. Compare to the smoother
curves of the OLIA in Fig. 8(b), the throughput variations of

0.0 0.01 0.05 0.1 0.2 0.5
Random Loss Rate/%

40

80

120

160

200
Th

ro
ug

hp
ut

/M
bp

s

LIA
OLIA
BALIA
wVegas
MPLibra
RL-based
MPCC
Uncoupled

(a) Throughput under different random loss rates

20 15 10 5 4 2
Buffer size/(×100)Packets

100

120

140

160

180

200

Th
ro

ug
hp

ut
/M

bp
s

LIA
OLIA
BALIA
wVegas
MPLibra
RL-based
MPCC
Uncoupled

(b) Throughput under shallow buffer

0 100 200 300 400 500 600
Time / s

0
20
40
60
80

100
120
140
160
180

Th
ro

ug
hp

ut
/M

bp
s

LIA
OLIA

BALIA
wVegas

MPCC
Uncoupled

MPLibra

(c) Throughput under changing network conditions

Fig. 9: Throughput comparisons

MPTCP

TCP

(a) One subflow of MPTCP competes
with one TCP Reno flow

MPTCP

TCP

TCP

(b) Two subflows of MPTCP compete
with two different TCP Reno flows

MPTCP

TCP

(c) One subflow of MPTCP competes
with TCP Reno flow and the other

MPTCP

CBR

(d) One subflow of the MPTCP com-
petes with one CBR flow

Fig. 10: Evaluated 2-link networks.

MPLibra experience periodical fluctuation because it needs
to select the best one from two candidate decisions. In a
word, this demonstrates the importance of the classis MPTCP
module in terms of friendliness since the pure learning-based
MPTCP always aggresively grab bandwidth and starve the
TCP Reno flow as shown in the motivation of Fig. 4(a).
Throughput variations under different random loss rates.
We set the different random loss rates for the links in Fig. 1(a)
and compare the achieved throughput for benchmark schemes.
The results are shown in Fig. 9(a). According to the statistics,
the throughput of the clean slate RL-based MPTCP is always
high since it has a comprehensive evaluation for the congestion
signals and aggressively increases its rate. However, LIA,
OLIA and BALIA show their vulnerabilities on consistent high
throughput: the throughput is reduced by around 90% when
the random loss rate reaches 0.5%. MPCC and delay-based
wVegas always under-utilize the link capacity even when the
random loss rate is zero. MPLibra presents a good resilience
to non-congestion loss and can provide a reasonable tradeoff
between high throughput and friendliness.
Throughput variations under different buffer sizes. We
explore the impact of different buffer sizes on throughput,
where the buffer size varies from 200 packets (1/5BDP) to
2000 packets (2BDP). As shown in Fig. 9(b), MPLibra and the
clean slate RL-based MPTCP can maintain high throughput
even when the buffer size is set to be 200 packets, while
the classic MPTCPs can achieve hight throughput only in
the presence of deep buffer. This presents the complementary
advantages of MPLibra under different buffer sizes.
Throughput variations under changing network character-
istics. To present MPLibra’s advantages on adaptability, we
simulated a network environment based on the topology in

Fig.1(a), where the link capacity varies from 10 to 80 Mbps,
the link delay varies from 20 to 120ms, the random loss rate
varies from 0.01% to 0.05%, and they change every 30s.
The blue shaded area in Fig.9(c) indicates the link capacity
variations with time. According to the Fig.9(c), we can observe
that the throughput of MPLibra is near optimal.

Next we focus on friendliness for four network scenarios.
We show the utilization and the Jain’s fairness index for each
MPTCP connection in Fig.11. Unless specifically stated, all
link capacities, delays, random loss rate and buffer sizes are set
to 5Mbps, 60ms, 0.001% and 50 packets (1BDP), respectively.
Friendliness: one MPTCP with two subflows competes with
one TCP Reno flow on a bottleneck link. The network
topology we used is shown in Fig.1(b). The Fig.11(a) shows
that uncoupled and the clean slate RL-based MPTCP can
achieve around twice as much throughput as TCP Reno flow
since their design principles cannot take friendliness into
account. Though MPCC does no harm to TCP Reno flows ,
it fails to maintain the desired throughput. This is because the
increased delay and loss rate introduced by TCP Reno flow can
also make MPCC proactively reduce the sending rate. wVegas
also shows its disadvantages: when competing with loss-based
MPTCPs, it achieves less bandwidth than that of TCP Reno
flow. Compared with classic loss-based MPTCP, MPLibra can
achieve comparable friendliness and link utilization.
Friendliness: one subflow of MPTCP competes with one
TCP Reno flow on a bottleneck link. The network topology
used is shown in Fig.10(a). Since the top link has the same
capacity as that of the bottom link, ideally MPTCP should
shift all traffic to the bottom link. In this scenario, wVegas
achieves relatively high fairness index but only about 70%
utilization. Nearly all benchmark schemes deviate from the

(a) The network topology used is
shown Fig.1(b)

(b) The network topology used is
shown Fig.10(a)

(c) The network topology used is
shown Fig.10(c)

(d) The network topology used is
shown Fig.10(b)

Fig. 11: Ratio between the total throughput and capacity and Jain’s fairness index [17] comparisons.

Fig. 12: Friendliness of the MPTCP with arbitrary number of
subflows.

0 20 40 60 80 120 140 160 180 200100
Time / s

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
/M

bp
s subflow 1 subflow 2

(a) MPLibra

subflow 1 subflow 2

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
/M

bp
s

0 20 40 60 80 120 140 160 180 200
Time / s

0 20 40 60 80 120 140 160 180 200
Time / s

0 20 40 60 80 120 140 160 180 200
Time / s
100

(b) BALIA

Fig. 13: Throughput comparisons

ideal equilibrium point and only MPLibra can achieve a good
tradeoff between utilization and friendliness.
Friendliness: one subflow of MPTCP competes with TCP
Reno flow on the first bottleneck link and this subflow
competes with the other subflow on the second bottleneck
link. The network topology used is shown in Fig.10(c), where
two subflows of MPTCP share a 5 Mbps bottleneck link. In
this scenario, if MPTCP cannot well shift the traffic from the
bottom link to the top link, it will greatly reduce the overall
throughput. From Fig.11(c), we can observe that uncoupled
and the clean slate RL-based MPTCPs achieve relatively
low link utilization, though their objectives aim to maximize
the throughput. At the same time, MPLibraand the coupled
MPTCPs perform better.
Friendliness: one subflow of MPTCP competes with the
first TCP Reno flow and the other subflow of this MPTCP
competes with the second TCP Reno flow. The network
topology used is shown in Fig.10(b). Fig.11(d) shows that
wVegas is close to the optimal allocation and MPLibra beats
benchmark schemes in terms of both overall link utilization
and fairness index.
Friendliness: One MPTCP with arbitrary number of
subflows competes with TCP Reno flow on a bottleneck

link. We test whether MPTCPs’ friendliness still holds when
they have more than 2 subflows through this experiment. The
evaluated topology is similar to the one in Fig.1(b) and the
only difference is that the MPTCPs in this experiment have
more than 2 subflows. We compare MPLibra’s friendliness
when it has 2, 3 and 5 subflows with LIA and clean-slate RL-
based method. The Fig.12 shows the Jain’s fairness indexs of
the MPTCP flows and the single path TCP flows and it indi-
cates that MPLibra and LIA can still ensure friendliness but
clean-slate RL-based method deviates further from the friendly
distribution with the increase of the number of subflows.

Based on the discussions above, we can derive that MPLi-
bra can maintain good performance in terms of link utilization
and friendliness under a variety of scenarios. In the following,
we evaluate MPLibra’s ability of balancing congestion.
Performance on balancing congestion: there is a TCP flow
that suddenly joins and terminates. Based on the scenario
in Fig.10(b). We enable the regular TCP flow of the bottom
link(which competes with MPTCP’s subflow2) from 0s to 100s
and the one of the top link (which competes with MPTCP’s
subflow1) from 100s to 200s. The optimal result is that the
MPTCP can immediately transfer the traffic from subflow1
to subflow2 at 100s. We plot the MPLibra and BALIA’s
throughput during the whole process in Fig.13. We observe
that both MPLibra and BALIA can well handle this situation
since they can complete shifting within 15s.
Performance on balancing congestion: there is a bursty
CBR flow. Next we compare the performance of MPLibra and
baselines under the scenario from Fig.10(d) that requires fast
load balancing ability. The bursty CBR flow sends traffic to the
top link at 5Mbps for a random duration of 1s, then it stays off
for a random duration of 10s. The most ideal behavior of the
MPTCP is sending no traffic to the top link when there is CBR
flow and take up the link capacity immediately when the CBR
flow is off. Fig.14 shows that the classic methods fail to fastly
grab the free capacity when CBR flow is quiet thus leading
to their under utilization of the top link. the clean slate RL-
based method can flexibly tune its sending rate to adapt to the
changing network and the MPLibra can achieve comparable
performance. wVegas and MPCC fail to fully utilize both links
in this experiment.
Performance on practicality: overhead Since the learning-
based methods usually has the problem of high computation

Fig. 14: Performance on balancing the
traffic among different subpaths

Fig. 15: The download time comparisons
of a 75MB file through symmetry and
asymmetry networks.

2 4 5 10 15 20
Buffer size/(×100)Packets

130

140

150

160

170

180

Av
er

ag
e

La
te

nc
y/

m
s

LIA
OLIA
BALIA
wVegas
MPLibra-OLIA
RL-based
MPCC
Uncoupled
MPLibra-wVegas

Fig. 16: Average latency under different
buffer sizes

Fig. 17: The normalized overhead comparisons of learning-
based methods. The schemes that are marked with ”SP” are
single-path methods.
overhead, we focus on comparing the CPU utilization and
memory utilization of the energy-extensive learning module
of the existing methods in Fig.17. As show in Fig.17, the
single path MPLibra achieves much lower CPU and memory
utilization compared with other single path learning-based
schemes such as PCC, Aurora and Indigo. When the number
of subflows expands to 2, MPLibra can still achieve acceptable
computation overhead.

There are several reasons to believe that MPLibra can
significantly reduce the computation overhead compared with
the clean slate RL-based schemes. First, our RL-agent doesn’t
need to perform on every MI, it only derives action at the end
of the exploration stage. Second, because the training complex-
ities are reduced, the agent’s network are more potential to be
simplified and it will lead to lower cost of the computation.
Performance on practicality: the issues of the existing
learning-based methods The design of MPLibra can com-
pletely avoid the practical problems of learning-based method
mentioned in the Sec. II. Since we arrange RL agents on
each subflow, we no longer have to set an unified MI for
all subflows and every subflow’s MI can be set according to
its RTT. Also, we don’t suffer the problems of training and
the flexible subflow numbers since whenever a new subflow
comes in or an old subflow ends, we can safely arrange RL
agents that can assure sublfow-level performance according to
the number of active subflows.
Performance on file download time. File transfer download
time is an practical application-level metric that can better

show the transfer efficiency. We simulate the transfer of a
75MB file using different benchmarks. We conduct extensive
experiments on symmetry, capacity-asymmetry and delay-
asymmetry paths respectively. For symmetry paths, both paths
have 5 Mbps capacity, 120 ms latency, 50 packets buffer
(1BDP) and 0.05% random loss rate. Fig. 15 shows that the
clean slate RL-based MPTCP completes the transfer first and
MPLibra follows. For capacity-asymmetry paths, the capacity
of path 1 and path 2 are 4 Mbps and 8 Mbps respectively,
the other settings are the same as that of the symmetry one.
According to Fig. 15, MPLibra also shows high efficiency on
file transfer. For delay-symmetry paths, we set the delay of
path 1 and path 2 to 60 ms and 120 ms respectively. Note that
here the clean slate RL-based MPTCP no longer outperforms
benchmark schemes since the length of its monitor interval is
fixed and cannot well match the delay asymmetry scenarios.
Overall, MPLibra reduces file transfer time by an average of
47.7% compared to LIA.
Performance on low latency. We compare the latency
achieved by benchmark schemes on the network topology
shown in Fig. 1(a), where the buffer size varies form 10 to
100 packets. The base RTT and the capacities of both links
are 120 ms and 5 Mbps, respectively. Fig. 16 shows that
the average delay of the classic loss-based MPTCPs becomes
larger when the buffer sizes increase. The clean slate RL-
based MPTCP and MPCC can minimize the latency since
both of their reward functions include the latency. Though the
default classic MPTCP module of MPLibra is the loss-based
OLIA, MPLibra can significantly reduce the high latency
associated with classic loss-based MPTCPs. In addition, to
show the flexibility of MPLibra’s classic MPTCP module,
we also evaluate the MPLibra-wVegas whose classic MPTCP
module is wVegas, and Fig. 16 shows that the latency of
MPLibra-wVegas without the base latency (120 ms) is at most
about half as much as that of MPLibra.

VI. RELATED WORK

Classic MPTCPs: Initially, MPTCPs use an uncoupled
mechanism to perform multipath congestion control [16],
simply applying TCP NewReno to each subflows. Due to

fairness concern, EWTCP [15] adjusts the additive parameters
and tries to guarantee connection-level fairness. Later,
LIA [32] is proposed to maintain consistent high throughput
and fairness. Khalili et al. observe that bandwidth allocation
in LIA is not Pareto-optimal due to improper adjustment of
congestion window size, and their proposed OLIA [19] can
achieve the optimal allocation and friendliness. Furthermore,
BALIA [27] attempts to strike a balance between LIA
and OLIA. wVegas — a delay-based MPTCP —- extends
Vegas [4] to a multipath networks and uses the queuing
delay as the congestion signal to perform fine-grained rate
decisions. Furthermore, TCP Cubic [12] and BBR [6] are
also extended to MPTCP [21] [13] respectively.
Learning-based MPTCPs: In the last few years, several
learning-based MPTCPs emerge. Xu et al. [34] use the deep
reinforcement learning to solve the multipath congestion
control problem for the first time, which integrates LSTM [14]
and actor-critic networks for end-to-end model training to
reduce the impact of sudden entry and termination of flow
in MPTCP environments. Li et al. [17] propose SmartCC to
deal with the diversity of multiple paths in a heterogeneous
network such as buffer bloat and unideal performance of
bandwidth utilization. As the variant of the famous PCC
Vivace [7], MPCC [11] propose an online-learning method
which use gradient ascent to reach the global optimal point.

VII. CONCLUSION

In this paper, we design and evaluate a multipath con-
gestion control framework MPLibra which can leverage the
advantages of the classic and RL-based MPTCPs. Extensive
experiments show that MPLibra outperforms state-of-the-art
MPTCPs in a variety of performance metrics such as consis-
tent high-throughput, friendliness to TCP Reno flow and the
ability to balance congestion.

ACKNOWLEDGEMENT

We would like to thank our shepherd Hulya Seferoglu and
anonymous reviewers for their valuable comments on drafts
of this paper. This work was supported in part by the China
NSF grants (62172206, 61972254, 61802172), China NSF
of Jiangsu Province (BK20201248) and Open Fund of PDL
(WDZC20205500109).

APPENDIX A
PROOF FOR THEOREM 1

We prove MPLibra’s properties on LMMF and convergence
by the following three lemmas. Lemma 1 and Lemma 2
indicate that the bandwidth allocation in the equilibrium point
satisfies LMMF. Lemma 3 shows that MPLibra can converge
to an equilibrium point.

Lemma 1. MPLibra’s utility function tends to select a deci-
sion that satisfies LMMF in an equilibrium point.

Proof. For MPLibra flows, Let 𝑥𝑟 stands for the sending rate
of a subflow 𝑟 and let 𝑡𝑠 stands for the fixed sending rate of a

subflow𝑠. We have the second derivative of the utility function
of the subflow r’s sending rate 𝑥𝑟:

𝜕2(log(
∑︀
𝑠 ̸=𝑟

𝑡𝑠 + 𝑥𝑟)− 𝛽 · (
∑︀
𝑠 ̸=𝑟

𝑡𝑠 + 𝑥𝑟) · 𝐿𝑎
𝑖)

𝜕(𝑥𝑟)2
= −

1

(
∑︀
𝑠 ̸=𝑟

𝑡𝑠 + 𝑥𝑟)2
< 0

(2)
Therefore, the utility function is strictly concave. According

to [11], any equilibrium resulted by such a utility function is
LMMF.

Lemma 2. The equilibrium point resulting from LIA, OLIA
and BALIA satisfies LMMF.

The proof of Lemma 2 can be found in [32] [19] [27].

Lemma 3. MPLibra can converge to an equilibrium point.

Proof. Here we present the proof that the LMMF equilibrium
point can be achieved. Without loss of generality, the following
proof assumes that there are no two subflows from one
connection share a link since in that case the utility value
of each subflow would be the same and the rate adjustment
will also be very similar.
When the equilibrium point has not been reached, the rate
allocation will move to the equilibrium point. We assume
the connection i and connection j whose subflows are sending
traffic on the link l. Define 𝐶𝑙 as the capacity of link l and
𝑥𝑙 = 𝑥𝑖 + 𝑥𝑗 as the traffic of link l. Let’s discuss in cases:
(i). 𝑥𝑙 < 𝐶𝑙: Under these conditions, there will be no loss rate
increase thus classic MPTCPs will increase its sending rate in
AI manner and we expect the RL-based method can utilize
the capacity fastly. Finally, MPLibra will prefer a faster one
of classic MPTCPs and RL-based to choose. Then it will lead
to the increase of 𝑥𝑙 and move to equilibrium.
(ii). 𝑥𝑙 > 𝐶𝑙: When the traffic exceeds capacity, classic
MPTCPs will halve its cwnd to half and RL-based will also
tends to reduce sending rate since it sees the leap of its loss
rate. Then it will leads to the decrease of 𝑥𝑙 and move to
equilibrium.
(iii). 𝑥𝑙 = 𝐶𝑙 but 𝑡𝑖 > 𝑡𝑗: As the equation 2 suggests, the
derivative of the utility function of connection i’s subflow
is strictly higher. As a result, i’s subflow will prefer more
aggressive decisions compare to j’s subflow and the difference
|𝑥𝑖 − 𝑥𝑗 | will be increasingly smaller and finally move to a
allocation that satisfies LMMF.
When the equilibrium point has been reached, the rate
allocation will stabilize within a certain range. With the
guidance of the utility function, the total traffic 𝑥𝑙 of link 𝑙
will be stable in the range (𝐶𝑙, 𝐶𝑙(1+ 1

𝛽−2)] [11] from some
point in time onwards. The classic MPTCPs’ stability has also
been prooved in [32] [19] [27]. Although the RL module of
MPLibra is not stable in some untrained scenarios, it can
be compensated by the theoretical advantages of the classic
MPTCP in stability.

REFERENCES

[1] S. Abbasloo, C.-Y. Yen, and H. J. Chao. Classic meets modern: A
pragmatic learning-based congestion control for the internet. In ACM
SIGCOMM, pages 632–647, 2020.

[2] S. Barré, C. Paasch, and O. Bonaventure. Multipath tcp: from theory to
practice. In International conference on research in networking, pages
444–457. Springer, 2011.

[3] O. Bonaventure, C. Paasch, G. Detal, et al. Use cases and operational
experience with multipath tcp. RFC 8041, 2017.

[4] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. Tcp vegas: New
techniques for congestion detection and avoidance. SIGCOMM Comput.
Commun. Rev., 24(4):24–35, Oct. 1994.

[5] Y. Cao, M. Xu, and X. Fu. Delay-based congestion control for multipath
tcp. In IEEE ICNP, pages 1–10, 2012.

[6] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson.
Bbr: congestion-based congestion control. Communications of the ACM,
60(2):58–66, 2017.

[7] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira. PCC vivace: Online-learning congestion control. In
USENIX NSDI, pages 343–356, 2018.

[8] S. Emara, B. Li, and Y. Chen. Eagle: Refining congestion control by
learning from the experts. In IEEE INFOCOM, pages 676–685, 2020.

[9] S. Floyd, T. Henderson, and A. Gurtov. Rfc3782: The newreno
modification to tcp’s fast recovery algorithm, 2004.

[10] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, and C. Paasch. Rfc
6824: Tcp extensions for multipath operation with multiple addresses.
Internet Engineering Task Force, 2013.

[11] T. Gilad, N. Rozen-Schiff, P. B. Godfrey, C. Raiciu, and M. Schapira.
Mpcc: online learning multipath transport. In ACM CoNEXT, pages
121–135, 2020.

[12] S. Ha, I. Rhee, and L. Xu. Cubic: a new tcp-friendly high-speed tcp
variant. ACM SIGOPS operating systems review, 42(5):64–74, 2008.

[13] J. Han, Y. Xing, K. Xue, D. S. Wei, G. Xue, and P. Hong. Leveraging
coupled bbr and adaptive packet scheduling to boost mptcp. arXiv
preprint arXiv:2002.06284, 2020.

[14] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[15] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and H. Tokuda. Multipath
congestion control for shared bottleneck. In PFLDNeT workshop,
volume 357, page 378, 2009.

[16] J. Iyengar, P. Amer, and R. Stewart. Concurrent multipath transfer
using sctp multihoming over independent end-to-end paths. IEEE/ACM
Transactions on Networking, 14(5):951–964, 2006.

[17] R. K. Jain, D.-M. W. Chiu, W. R. Hawe, et al. A quantitative measure
of fairness and discrimination. Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA, 1984.

[18] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar. A deep
reinforcement learning perspective on internet congestion control. In
PMLR ICML, pages 3050–3059, 2019.

[19] R. Khalili, N. Gast, M. Popovic, et al. Opportunistic linked-increases
congestion control algorithm for mptcp. 2013.

[20] M. Kheirkhah, I. Wakeman, and G. Parisis. Multipath-tcp in ns-3. arXiv
preprint arXiv:1510.07721, 2015.

[21] T. A. Le, C. S. Hong, and S. Lee. Mpcubic: An extended cubic tcp
for multiple paths over high bandwidth-delay networks. In ICTC 2011,
pages 34–39, 2011.

[22] W. Li, H. Zhang, S. Gao, C. Xue, X. Wang, and S. Lu. Smartcc: A
reinforcement learning approach for multipath tcp congestion control in
heterogeneous networks. IEEE Journal on Selected Areas in Communi-
cations, 37(11):2621–2633, 2019.

[23] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

[24] Y.-s. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens. Ecf: An mptcp
path scheduler to manage heterogeneous paths. In ACM CoNEXT, pages
147–159, 2017.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[26] C. Paasch et al. Improving multipath tcp. Diss. Universit’e catholique
de Louvain (UCL), London, 2014.

[27] Q. Peng, A. Walid, and S. H. Low. Multipath tcp algorithms: theory and
design. ACM SIGMETRICS Performance Evaluation Review, 41(1):305–
316, 2013.

[28] B. Radunovic and J.-Y. Le Boudec. A unified framework for max-min
and min-max fairness with applications. IEEE/ACM Transactions on
networking, 15(5):1073–1083, 2007.

[29] C. Raiciu, M. Handley, and D. Wischik. Coupled congestion control for
multipath transport protocols. Technical report, IETF RFC 6356, Oct,
2011.

[30] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[31] A. Walid, Q. Peng, J. Hwang, and S. Low. Balanced linked adaptation
congestion control algorithm for mptcp. Working Draft, IETF Secre-
tariat, Internet-Draft draft-walid-mptcp-congestion-control-04, 2016.

[32] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design,
implementation and evaluation of congestion control for multipath tcp.
In USENIX NSDI, volume 11, pages 8–8, 2011.

[33] M. Xu et al. Delay-based congestion control for mptcp, draft-xu-mptcp-
congestion-control-05. bd, 2017.

[34] Z. Xu, J. Tang, C. Yin, Y. Wang, and G. Xue. Experience-driven con-
gestion control: When multi-path tcp meets deep reinforcement learning.
IEEE Journal on Selected Areas in Communications, 37(6):1325–1336,
2019.

[35] H. Zhang, W. Li, S. Gao, X. Wang, and B. Ye. Reles: A neural adaptive
multipath scheduler based on deep reinforcement learning. In IEEE
INFOCOM, pages 1648–1656, 2019.

