
Minimizing Transient Congestion during
Network Update in Data Centers

Jiaqi Zheng∗†, Hong Xu†, Guihai Chen∗‡, Haipeng Dai∗
∗State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210024, China

†Department of Computer Science, City University of Hong Kong, Hong Kong
‡Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract—To maximize data center network utilization, the
SDN control plane needs to frequently update the data plane as
the network conditions change. Since each switch updates its flow
table independently and asynchronously, the state transition—
if done directly from the initial to the final stage—may result
in serious flash congestion and packet loss. Prior work strives
to find a congestion-free update plan with multiple stages, each
with the property that there will be no congestion independent
of the update order. Yet congestion-free update requires part of
the link capacity to be left vacant and decreases utilization of
the expensive network infrastructure. Further, it involves solving
a series of LP, which is slow and does not scale well.

In this paper, we study the more general problem of minimizing
transient congestion during network update, given the number
of intermediate stages. This exposes the tradeoff between update
speed and transient congestion, and allows an operator to navi-
gate a broader design space for performing network update. We
formulate the minimum congestion update problem (MCUP) as
an optimization program and prove its hardness. We propose an
approximation algorithm and a greedy improvement algorithm
to find the update sequence in an efficient and scalable manner.
Extensive experiments with Mininet show that our solution
reduces update time by 50% and saves control overhead by 30%
compared to state of the art.

I. INTRODUCTION

In software defined networking (SDN), a logically central-
ized controller has a global view of the network state, and is re-
sponsible for delivering the control decisions to the data plane.
The controller enforces policies by installing, modifying, or
deleting forwarding rules in switch flow tables through south-
bound APIs such as Openflow [22]. SDN presents tremendous
advantages for data center networks. Google and Microsoft
build B4 [12] and SWAN [11], respectively, to interconnect
their data centers and achieve higher network utilization, lower
delay, and less packet loss.

Despite the centralization of control plane, data plane re-
mains a distributed system. When network conditions change
due to for example routing policy reconfiguration, switch
upgrade, network failures, or traffic variations, the controller
needs to update the data plane by modifying the flow tables so
as to optimize performance. This process is not atomic [25]:
each switch is updated independently and asynchronously.
Thus network update may result in serious congestion dur-
ing the transient period, even though the initial and final
configurations are not. For example, congestion may happen
when new flows—those that are supposed to be carried by
a switch after the update—arrive before old ones that need

to be migrated have left. Updates in both intra-datacenter and
inter-datacenter networks, if not carefully planned, may disrupt
many applications [11], [19].

Existing work, especially SWAN [11] and zUpdate [19],
proposes to find a congestion-free update plan to solve this
problem. The update plan consists of discrete stages, each of
which involves changing flow tables of a set of switches, with
the property that there will be no congestion independent of
the update order or timing. This approach suffers from several
drawbacks, however.

TABLE I
RUNNING TIME FOR FINDING CONGESTION-FREE UPDATE PLANS

1K 2K 3K 4K 5K
DCN 0.73 min 1.40 min 2.10 min 2.96 min 4.12 min
WAN 0.60 min 1.01 min 1.57 min 2.43 min 3.12 min

For DCN, the topology is an 8-pod fat-tree, with 16 long-lived flows in
the background. For WAN the topology is Microsoft’s production network
topology from [11]. The initial and final routing is generated randomly.
We use the algorithms in [19] and [11] to find a congestion-free update
plan for DCN and WAN, respectively, using LINGO as the solver, with
different numbers of flows in the network.

First, to guarantee that a congestion-free update plan always
exists, a portion (10%–50% [11]) of the network capacity
has to be left vacant before update. This leads to reduced
utilization of the expensive network infrastructure. Second,
calculating a congestion-free update plan requires solving a
series of LPs, which is too slow for production scale networks.
Table I shows the running time of the algorithms in [11], [19]
for data center networks (DCN) and inter-data center wide area
networks (WAN) which connect geo-distributed data centers
of the same operator. Note that a real DCN have more than
5K flows [16]. However not all of them need to be explicitly
managed by the controller; only elephant flows are subject to
explicit control of SDN and require controller intervention.
In Table I, all flows in DCN refer to elephant flows. When
the number of flows is larger than 2K, the running time in
both scenarios is well beyond one minute. Thus congestion-
free update is infeasible for operators like Google [12] and
Microsoft [11] who perform centralized traffic engineering
(TE) every five minutes to improve link utilization. In addition,
slower update speed limits the controller’s ability to react to
failures and degrades application performance.

Instead of congestion-free update, in this paper we advocate

to find an update plan that minimizes the transient congestion,
given the number of intermediate stages within which the
update needs to be done. We argue that, since switches are
deeply buffered [10], and many low-priority data transfers
tolerate packet loss especially in inter-data center WAN [15],
it is worthwhile to explore solutions with a small extent of
transient congestion. Our problem is more general in the sense
that it allows the operator to navigate a broader design space,
where one may trade off update speed, represented by the
number of intermediate stages, for the extent of transient
congestion. In previous work, the number of intermediate
stages is not known until a update plan is found and cannot
be adjusted [11], [19].

We make three novel contributions in this paper. First, we
propose a general optimization framework for the minimum
congestion update problem (MCUP) both in DCN and WAN.
Generally speaking, the optimization program aims to deter-
mine routing for all ρ intermediate stages, where ρ is given,
such that the maximum link utilization during the transition is
minimized. We take into account single-path routing and mul-
tipath routing as constraints to meet the different application
requirements, since applications such as video do not work
well when their flows are split.

Our second contribution is a set of efficient algorithms to
solve MCUP. We prove that MCUP is NP-hard, and thus
focus on designing approximation algorithms. We first propose
a randomized rounding algorithm and prove that it yields
a O(log k) upper bound of link congestion, where k is the
number of switches. This algorithm only requires solving one
LP and thus have faster running time than prior work. We fur-
ther propose a greedy improvement algorithm which improves
upon the rounding result by greedily rerouting each flow in
each stage. The greedy algorithm has the same approximation
ratio O(log k) as the rounding algorithm in general topologies,
and an approximation ratio of 4 for fat-tree in particular.

Our third contribution is a comprehensive performance
evaluation of our algorithms in both DCN and WAN scenarios
using production topologies. Simulation results show that our
algorithms can reduce average link congestion by 60% and
67%, respectively, in both scenarios with 5 intermediate stages,
and save 30% control overhead compared to prior work. We
also develop a prototype of our algorithm on Mininet using
the Floodlight controller. Experimental results show that our
solution is 50% faster than prior work.

The remainder of the paper is organized as follows. We
summarize related work in Sec. II. We give a formal definition
of MCUP and analyze its hardness in Sec. III. In Sec. IV
we present a rounding algorithm and prove its congestion
upper bound. Based on the solution of the rounding algorithm,
in Sec. V we propose the greedy improvement algorithm.
Experimental evaluation and implementation are presented in
Sec. VI and Sec. VII, and finally Sec. VIII concludes the paper.

II. RELATED WORK

We briefly review prior art on network update in both
traditional networks and SDN.

R1 R2 R3

R4R5R6

FC
FB

FA

FC

FA FB

FA 0.2 Mbps FB 1.0 Mbps

FC 0.8 Mbps 1.0 Mbps

R1 R2 R3

R4R5R6

FA

FB

R1 R2 R3

R4R5R6

R1 R2 R3

R4R5R6

FC
FA

FB

FA FB FC

R1 R2 R3

R4R5R6

FC

R1 R2 R3

R4R5R6

FC

FA FB

Fig. 1. Illustration of the network flow transition model.

In traditional networks, much work exists on avoiding
transient misbehavior during network update. For example,
consensus routing [14] considers the problem of eliminating
transient state inconsistency. Vanbever et al. [26] focus on
lossless migration and modification when moving from one
routing protocol to another. Raza et al. [24] propose graceful
network state migration, which strives to minimize the overall
performance disruption by reassigning and maintaining link
weights in the network.

Recent work starts to study network updates in SDN.
Reitblatt et al. [25] propose a two-phase commit protocol
that is guaranteed to preserve consistency when transitioning
between configurations. Noyes et al. [23] propose a tool used
for synthesizing network updates automatically and avoiding
errors caused by manual configurations such as forwarding
loops and access control violations. WayPoint [20], [21] aims
to minimize the number of sequential controller interactions
when directly transitioning from the initial to the final stage.
SWAN [11] and zUpdate [19] try to find congestion-free
update plans in WAN and DCN, respectively. Dionysus [13]
employs dependency graphs to find a fast congestion-free up-
date plan according to different runtime conditions of switches.
CPC [6] studies a distributed SDN control plane that enables
concurrent and robust policy implementation.

III. AN OPTIMIZATION FRAMEWORK

We introduce our optimization framework for the minimum
congestion update problem in this section.

A. A Motivating Example

In a software defined data center network, whenever the
topology or traffic matrix changes, the controller needs to
recalculate routing in order to optimize performance. Con-
sider the example in Fig. 1, in which there are six switches
R1, . . . , R6, and the link capacity is 1 Mbps. FA and FB

are two flows from R1 to R5, whose demands are 0.2 Mbps
and 1 Mbps, respectively. FC is a flow from R3 to R5,
whose demand is 0.8 Mbps. The initial routing is illustrated in
Fig. 1(a). At this point, suppose a new flow appears from R3

to R4 with a demand of 1 Mbps. The controller then wants to
change routing to Fig. 1(b). Due to the different update order,
the three flows may be routed temporarily as in Fig. 1(c) during
the transition. In this case congestion occurs at the link from
R2 to R5, which is overloaded with twice its capacity, and
results in severe packet loss.

Introducing intermediate stages can reduce transient con-
gestion [11], [19]. For example, zUpdate [19] takes advantage
of vacant capacity to find a congestion-free update plan. It
first moves 80% of FB onto path 〈R1, R6, R5〉 and keeps the
remaining 20%. Then FA is moved from path 〈R1, R2, R5〉
to 〈R1, R6, R5〉. Finally the remaining 20% of FB and all FC
is moved to their final paths. The whole process has three
intermediate stages and involves solving three LPs, one for
each stage.

Yet a congestion-free update plan may not always exist
especially when the number of flows is large. Thus one has to
set aside some capacity on each link to guarantee its existence,
as proved in SWAN [11], and resource utilization is reduced.
In this case, FB with 1 Mbps demand cannot be completely
satisfied through path 〈R1, R2, R5〉. It must be split onto
different paths. Flow splitting may not be feasible for certain
applications that are sensitive to TCP packet reordering, such
as video applications.

In contrast, we wish to find an update plan that minimizes
the transient congestion. Assume FA, FB and FC are three
unsplittable flows. They should be routed only through a single
path during update. If we consider the update plan in which
routing is first changed from Fig. 1(a) to Fig. 1(d), and then
to Fig. 1(b), transient congestion can be reduced significantly.
Specifically, transitioning from Fig. 1(a) to Fig. 1(d) only
causes the link capacity to exceed by 0.2, with two possible
transient states shown in Fig. 1(e) and Fig. 1(f), and the
transition from Fig. 1(d) to Fig. 1(b) is congestion-free. So
the overall transient congestion is 0.2. This update plan may
be acceptable in practice because switches have buffers to
accommodate traffic bursts, and data center transports such
as DCTCP can detect congestion early on with ECN to
adjust sending rate in a fine granularity [5]. Further many
applications, such as data processing frameworks, are elastic
to bandwidth and can tolerate temporary rate reduction [18].

Moreover, the problem of finding an update plan that min-
imizes transient congestion given the number of intermediate
stages is more general than finding a congestion-free plan.
We expose the tradeoff between update speed and congestion,
reducing the number of LPs that need to be solved and
allowing the operator to speed up the update process. In the
motivating example, there is only one intermediate stage which
requires solving just one LP. We design fast heuristics to
further improve the scalability of our solutions for large-scale
networks.

TABLE II
KEY NOTATIONS IN THIS PAPER.

Fsp The set of flows routed with single path routing
Fmp The set of flows routed with multipath routing
F The set of flows F = Fsp ∪ Fmp
V The set of switches v
E The set of links e
G The directed network graph G = (V,E)
S The set of stages the routing update is performed
Rv The capacity of flow table in switch v
Ce The capacity of link e

P (f) The set of possible paths for flow f
df The demand of flow f
n The number of update stages. n = |S|
ρ The number of intermediate stages. ρ = |S| − 2
k The number of switches in the network. k = |V |

B. Network Model

Before formulating the problem, we first present our net-
work model. A network is a directed graph G = (V,E), where
V is the set of switches and E the set of links with capacities
Ce for each link e ∈ E. According to application requirements,
we divided flows in the network into two categories. Fsp
represents the set of unsplittable flows that must use single
path routing during update; Fmp represents the set of flows
that can use multipath routing. Each flow f is associated
with a demand df , routed through a possible path p ∈ P (f)
between its source and destination. The set of stages is
S = {1, 2, . . . , n − 1, n}, in which stage 1 and stage n are
initial and final stage, respectively. Routing in stage 1 and stage
n are known while routing in stages 2, 3, . . . , n−1 need to be
determined. The number of intermediate stages ρ is specified
by the network operator. The operator may obtain this based
on the history of update data and its global view of the network
state, which however is beyond the scope of this paper. For
convenience, we summarize important notations in Table II.

C. Problem Formulation

Based on the above network model, we formulate the
minimum congestion update problem (MCUP) as a mixed
integer linear program (1). Given the number of intermediate
stages, we wish to find the optimal routing for all intermediate
stages that minimizes the transient congestion from the initial
stage to the final stage.

minimize max
e∈E,s∈{1,2,...,n−1}

µse (1)

subject to
∑

f∈Fsp∪Fmp

df
∑

p∈P (f):e∈p

max(xsf,p, x
s+1
f,p) ≤ µseCe,

∀e ∈ E,∀s ∈ {1, 2, . . . , n− 1}, (1a)∑
p∈P (f)

xsf,p = 1,

∀f ∈ Fsp ∪ Fmp,∀s ∈ {2, 3, . . . , n− 1},
(1b)

xsf,p ∈ {0, 1},

∀f ∈ Fsp,∀p ∈ P (f),∀s ∈ {2, 3, . . . , n− 1},
(1c)

xsf,p ≥ 0,

∀f ∈ Fmp,∀p ∈ P (f),∀s ∈ {2, 3, . . . , n− 1},
(1d)

µse > 0,∀e ∈ E,∀s ∈ {1, 2, . . . , n− 1}. (1e)

We define transient congestion as the maximum link con-
gestion relative to its capacity µse during update across the
network, as shown in the objective of MCUP (1). The op-
timization variables xsf,p indicate whether flow f is routed
through path p in stage s. Constraint (1a) characterizes tran-
sient congestion for individual links e during transition. For
example, as illustrated in Fig. 1, during the transition from
Fig. 1(a) to Fig. 1(b), i.e., from stage 1 to stage 2, the
maximum load of the link (R2, R5) is 0.2 × max(0, 1) +
1.0 × max(1, 0) + 0.8 × max(0, 1) = 2, which describes
the case shown in Fig. 1(c). Constraint (1b) is the flow
demand conservation constraint. Constraint (1c) represents the
single path routing constraint for unsplittable flows, and (1d)
represents the multipath routing constraint for splittable flows.

Because of the max function, constraint (1a) is not linear.
By introducing auxiliary variables {ysf,p} and {zsf,p}, we can
transform (1) to the following mixed integer program with
linear constraints. The auxiliary variable ysf,p (z

s
f,p) equals one

when unsplittable (splittable) flow f is routed through path p
either in stage s or s+ 1, and equals zero otherwise.

minimize max
e∈E,s∈{1,2,...,n−1}

µse (2)

subject to
∑
f∈Fsp

df
∑

p∈P (f):e∈p

ysf,p+∑
f∈Fmp

df
∑

p∈P (f):e∈p

zsf,p ≤ µseCe,

∀e ∈ E,∀s ∈ {1, 2, . . . , n− 1}, (2a)
ysf,p ≥ xsf,p, ∀f ∈ Fsp, (2b)

ysf,p ≥ xs+1
f,p , ∀f ∈ Fsp, (2c)

zsf,p ≥ xsf,p, ∀f ∈ Fmp, (2d)

zsf,p ≥ xs+1
f,p , ∀f ∈ Fmp, (2e)

(1b), (1c), (1d), (1e).

D. Hardness Analysis

We establish the hardness of MCUP below.
Theorem 1: MCUP is NP-hard, even for a network con-

sisting of two switches and m+ 1 parallel links.
Proof: Consider a special case of MCUP with only one

intermediate stage. We construct a polynomial reduction from
the set partition problem [7] to it. Consider a partition instance
consisting of m items, each with a value si, si ∈ R, i ∈
{1, 2, . . . ,m}. For each item we introduce two flows Fi and
F ′i with demands dFi

= dF ′i = si and the instance of
MCUP is constructed as shown in Fig. 2. There are 2m flows
from source s to destination t in the initial stage, in which

flows F1, F2, ..., Fm are routed through links e1, e2, . . . , em,
respectively, and flows F ′1, F

′
2, . . . , F

′
m are routed through a

single link e0. The final stage is that flows F ′1, F
′
2, . . . , F

′
m are

routed through links e1, e2, ..., em and flows F1, F2, ..., Fm are
routed through link e0. They cannot be split during update.
The link capacities are Cei = si, and Ce0 =

∑m
i=1 si for all

i ∈ {1, 2, . . . ,m}.
Therefore, any feasible partition of the items corresponds

to MCUP with only one intermediate stage, and vice versa.
The change of routing from the initial stage to the interme-
diate stage forms one set of the partition, and that from the
intermediate stage to the final stage forms the other.

s t

e2

e1

em

e0

Fm

F1

F2

F'm

F'1

F'2

Fig. 2. Reduction from Partition to MCUP.

IV. A ROUNDING ALGORITHM

We now design a rounding based approximation algo-
rithm [27] to tackle the NP-hard MCUP (2).

Algorithm 1 Randomized Rounding
Input: The optimal fractional solution {x̃sf,p} to the relaxed LP of

(2).
Output: A solution {x̂sf,p} to (1).

1: for s = 2 to n− 1 do
2: for each f ∈ Fmp do
3: for each p ∈ P (f) do
4: x̂sf,p = x̃sf,p
5: end for
6: end for
7: for each f ∈ Fsp do
8: P ′(f) = ∅
9: for each p ∈ P (f) and p 6∈ P ′(f) do

10: x̂sf,p = 0
11: P ′(f) = P ′(f) ∪ p
12: lsf,p =

∑
p′∈P ′(f) x̃

s
f,p′

13: end for
14: Generate a number r in (0,1] uniformly at random
15: Find p̂ such that r ≤ lsf,p̂ and lsf,p̂ − r is minimum
16: x̂sf,p̂ = 1
17: end for
18: end for

The mixed integer program (2) can be relaxed to a linear
program by replacing the constraint (1c) xsf,p ∈ {0, 1} with
xsf,p ≥ 0. Since constraint (1b) holds, {xsf,p} are in fact
real numbers between 0 to 1. The optimal fractional solutions
{x̃sf,p} of the relaxed LP of (2) can be obtained in polynomial
time using standard solvers.

As shown in Algorithm 1, for f ∈ Fmp, {x̃sf,p} is already
the feasible solution (lines 2-6). For f ∈ Fsp, we apply

randomized rounding to obtain an integer solution {x̂sf,p}
(lines 7-17). We do not show the process of rounding auxiliary
variable {ỹsf,p|f∈Fsp

}, which can be readily obtained from the
integer solutions {x̂sf,p|f∈Fsp

}. To ensure that only one path
is chosen for a flow f ∈ Fsp in stage s, the optimal fractional
solution can be viewed as partitioning the interval [0, 1] to
intervals of lengths {x̃sf,p|f∈Fsp

} (lines 9-13). A real number
is generated uniformly at random in (0, 1] and the interval in
which it lies determines the path (lines 14-16).

Before analyzing the performance of Algorithm 1, we
introduce the following definition.

Definition 1: Let µ∗ be the optimal solution to (1), which
gives a lower bound of transient congestion.

Theorem 2: If µ∗ > 1,∀e ∈ E, Algorithm 1 outputs
a feasible solution with transient congestion bounded by
O(log k)µ∗ from any stage s to s+1 with probability 1− 1

k2 ,
where k is the number of switches in the network.

The proof can be found in Appendix A.

V. A GREEDY IMPROVEMENT ALGORITHM

In this section we develop a greedy improvement algorithm
to improve the solution of the rounding algorithm. In spite of
its guaranteed approximation ratio, the randomized algorithm
is still not efficient as it may occasionally produce a bad
solution. The greedy algorithm improves upon the solution
of rounding by greedily rerouting each flow to a better path.
It has the same approximation ratio as the rounding algorithm
in general topologies, and has a constant approximation ratio
of 4 in fat-tree topology.

A. Algorithm Design

Let us introduce two related notations first.
Definition 2: The ∨ operator: Let {αs1f,p} and {βs2f,p} be

two routing configurations in stages s1 and s2. The result of
{αs1f,p} ∨ {β

s2
f,p} is a flow distribution {Df,e} in network G,

where Df,e = max({αs1f,p}, {β
s2
f,p}). If flow f ∈ Fsp, Df,e ∈

{0, 1}. If flow f ∈ Fmp, Df,e ∈ [0, 1].

FC
FAFB

FA 0.2 Mbps

FB 1.0 Mbps

FC 0.8 Mbps

1.0 Mbps
R1 R2 R3

R4R5R6

Fig. 3. The result of ∨ operator over routing configurations in Fig. 1(a) and
Fig. 1(b).

The ∨ operator maps routing configurations of different
stages onto the same network, which is convenient for further
optimization. Fig. 3 shows the ∨ operator applied over routing
configurations in Fig. 1(a) and Fig. 1(b).

The congestion calculation function φ is rigorously de-
scribed in Algorithm 2. It takes the result of ∨ operator {Df,e}
as input and calculates the maximal link congestion λ. ηe
denotes the load and δe the load relative to its capacity in
link e (lines 3-8). When Algorithm 2 stops, λ represents the
maximal link congestion. Take flow distribution in Fig. 3 as

Algorithm 2 Congestion Calculation Function φ
Input: Flow distribution {Df,e}.
Output: Maximal congestion λ.

1: for each e ∈ E do
2: ηe, δe = 0
3: for each f ∈ F do
4: if Df,e > 0 then
5: ηe = ηe + df ·Df,e
6: end if
7: end for
8: δe =

ηe
Ce

9: end for
10: λ = argmaxe∈E δe

the input of function φ, the result is 2.0, which represents the
transient congestion transitioning from Fig. 1(a) to Fig. 1(b).

Property 1: For any routing configuration {af,p} in the
network, φ({af,p} ∨ {af,p}) = φ({af,p}).

Property 2: Let {af,p}, {bf,p} and {cf,p} be three routing
configurations in the same network. If φ({af,p}) ≥ φ({bf,p}),
then φ({af,p} ∨ {cf,p}) ≥ φ({bf,p} ∨ {cf,p}).

Property 3: Let {af,p}, {bf,p}, {cf,p} and {df,p} be four
routing configurations in the same network. If φ({af,p}) ≥
φ({bf,p}) and φ({cf,p}) ≥ φ({df,p}), then φ({af,p} ∨
{cf,p}) ≥ φ({bf,p} ∨ {df,p}).

Theorem 3: Let {α1
f,p} and {γnf,p} be the initial and final

routing configurations. If there exists intermediate routing
configurations {β2

f,p}, {β3
f,p}, . . . , {β

n−1
f,p } such that the value

of φ({α1
f,p} ∨ {β2

f,p} ∨ . . . ∨ {βn−1f,p } ∨ {γnf,p}) is mini-
mum, {β2

f,p}, {β3
f,p}, . . . , {β

n−1
f,p } are the optimal intermediate

stages with the least transient congestion.
The proof can be found in Appendix B.

Algorithm 3 Greedy Improvement Algorithm
Input: The optimal fractional solution {x̃sf,p} to the relaxed LP of

(2).
Output: An optimized solution {x̂sf,p} to (1).

1: Run Algorithm 1 and obtain a solution {x̂sf,p}
2: λ = φ

(
∨s∈S{x̂sf,p}

)
3: for s∗ = n− 1 to 2 do
4: {βs

∗
f,p} = {x̂s

∗
f,p}

5: {Df,e} = ∨s∈S−{s∗}{x̂sf,p}
6: for each f∗ ∈ Fsp do
7: {D∗f,e} = {Df,e} ∨ {βs

∗
F−{f∗},p}

8: for each p ∈ P (f∗) do
9: βs

∗
f∗,p = 1

10: if φ
(
{D∗f,e} ∨ βs

∗
f∗,p

)
< λ then

11: {βs
∗
f,p} = {βs

∗

F−{f∗},p} ∨ βs
∗
f∗,p

12: λ = φ
(
{D∗f,e} ∨ βs

∗
f∗,p

)
13: end if
14: if φ

(
{D∗f,e} ∨ βs

∗
f∗,p

)
= λ and βs

∗
f∗,p = x̂s

∗+1
f∗,p then

15: {βs
∗
f,p} = {βs

∗
F−{f∗},p} ∨ βs

∗
f∗,p

16: end if
17: end for
18: end for
19: {x̂s

∗
f,p} = {βs

∗
f,p}

20: end for

We are now ready to describe our greedy algorithm shown in
Algorithm 3. We first run Algorithm 1 and obtain an initial so-
lution {x̂sf,p} (line 1), which serves as input to the congestion
calculation function φ (line 2). For simplicity, φ(∨s∈S{x̂sf,p})
represents φ({x̂1f,p}∨ {x̂2f,p}∨ . . .∨{x̂

n−1
f,p }∨ {x̂nf,p}), where

S = {1, 2, . . . , n} (line 2). We consider intermediate stages
n − 1 to 2 and greedily change the routing configuration
{βs∗f,p} flow by flow to improve transient congestion from
the initial stage {x̂1f,p} to the final stage {x̂nf,p} (lines 3-20).
{βs∗f,p} represent the routing of intermediate stage s∗ (line 4).
{Df,e} represent the result of ∨ operator applied over routing
of intermediate stages S−{s∗} (line 5). For each flow f∗, we
first calculate {D∗f,e}, which is the result of ∨ operator over
routing in all stages except f∗ in stage s∗ (line 7). Then we
move f∗ onto a different potential path p in order to find a
better routing (line 9). If the new routing βs

∗

f∗,p for f∗ results in
less congestion, we update {βs∗f,p} and λ (lines 10-13). Further,
if f∗ is routed through the final path p in stage s∗ + 1 and
does not increase congestion, we update {βs∗f,p} as well (lines
14-16). When all flows are rerouted in stage s∗, we update
{x̂s∗f,p} and enter the next stage (line 19).

Note that the congestion upper bound of the rounding
algorithm is O(log k). The greedy algorithm improves upon
it whenever possible. Thus its performance is at least as good
as that of rounding. We have the following.

Theorem 4: Algorithm 3 achieves an approximation ratio
no more than that of Algorithm 1 in a general topology.

B. Approximation Ratio for Fat-tree

We now consider a particular DCN topology, fat-tree [4],
an example of which is shown in Fig. 4(a). We analyze the
approximation ratio of Algorithm 3 in a fat-tree.

Definition 3: Let {α1
f,p} and {γnf,p} be the initial and final

routing. µ̂ = φ({α1
f,p} ∨ {β̂2

f,p} ∨ . . . ∨ {β̂
n−1
f,p } ∨ {γnf,p}),

where {β̂2
f,p}, {β̂3

f,p}, . . . , {β̂
n−1
f,p } are the optimal intermedi-

ate stages for a fat-tree.
Lemma 1: Independent of the rerouting order, when rerout-

ing any flow f∗ in stage s∗ in Algorithm 2, if φ({D∗f,e|e∈p}∨
βs
∗

f∗,p) ≥ 4µ̂, there must exist another path p′ such that
φ({D∗f,e|e∈p′}∨β

s∗

f∗,p′) < 4µ̂, where p, p′ ∈ P (f∗) and p 6= p′.
The proof can be found in Appendix C. Now we can show

that the greedy algorithm has a constant approximation ratio
in fat-tree networks.

Theorem 5: Algorithm 3 approximates MCUP in fat-tree
networks with a factor of 4.

Proof: By Lemma 1, for any flow f∗, if φ({D∗f,e|e∈p} ∨
βs
∗

f∗,p) ≥ 4µ̂, there must exist another path p′ ∈ P (f∗)

such that φ({D∗f,e|e∈p′} ∨ β
s∗

f∗,p′) < 4µ̂. When all flows
have been rerouted in all stages, there must exist interme-
diate routing configurations {β2

f,p}, {β3
f,p}, . . . , {β

n−1
f,p } such

that φ({α1
f,p} ∨ {β2

f,p} ∨ . . . ∨ {β
n−1
f,p } ∨ {γnf,p}) < 4µ̂ =

4 · φ({α1
f,p} ∨ {β̂2

f,p} ∨ . . . ∨ {β̂
n−1
f,p } ∨ {γnf,p}). According

to Property 2, Property 3 and Theorem 3, max(φ({α1
f,p} ∨

{β2
f,p}), φ({β2

f,p} ∨ {β3
f,p}), . . . , φ({β

n−1
f,p } ∨ {γnf,p})) ≤ 4 ·

1 2 3 4

5 6

7 8

(a) A 4-pod fat-tree DCN topology.

5
67

8
4

1 3
2

(b) Microsoft’s inter-data center WAN topology.

Fig. 4. Realistic network topologies used in our evaluation.

max(φ({α1
f,p}∨{β̂2

f,p}), φ({β̂2
f,p}∨{β̂3

f,p}), . . . , φ({β̂
n−1
f,p }∨

{γnf,p})) = 4µ∗. Hence, when Algorithm 3 stops, the maximal
transient congestion is less than or equal to 4µ∗.

VI. EXPERIMENTAL EVALUATION

We conduct extensive experiments to evaluate our algo-
rithms in this section.

A. Setup

We consider two realistic topologies.
• A 4-pod fat-tree for the DCN scenario as shown in

Fig. 4(a). The edge and aggregation layer has 4 switches
in each pod. Each edge switch connects to 2 hosts.
The network has 16 hosts and 4 core switches. Each
switch has 4 10 Gbps ports, resulting in a full bisection
bandwidth network.

• A realistic WAN topology for interconnecting Microsoft’s
data centers [13], which is illustrated in Fig. 4(b). There
are 8 switches and 14 10 Gbps links.

We consider both single path and multipath routing in the
DCN scenario. For the WAN scenario, we consider tunnel
based multipath routing [11]. For both settings, we leave 10%
link capacity vacant on each link for SWAN. Flows in the
network are generated randomly [2], and we change the flow
demand to simulate traffic variations. We calculate the initial
routing before the flow demand changes and final routing after
the flow demand changes to maximize link utilization [8].

B. Benchmark Schemes

We evaluate the following schemes.
One Shot: Transition directly from the initial to the final

stage.
RR: Our randomized routing algorithm as in Algorithm 1.
GI: Our greedy improvement algorithm as in Algorithm 3.
OPT: The optimal solution of the integer program (2)

obtained using the branch and bound method.
SWAN: State-of-the-art congestion-free update algo-

rithm [11]. As discussed in Sec. I, this heuristic algorithm

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Maximum Link Congestion (%)

C
D

F

OPT
GI
RR
One Shot

(a) DCN scenario

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Maximum Link Congestion (%)

C
D

F

OPT
GI
RR
One Shot

(b) WAN scenario

Fig. 5. Maximum link congestion comparison.

1K 2K 3K 4K 5K 6K
0

1000

2000

3000

4000

5000

The number of flows

T
h

e
n

u
m

b
er

 o
f

co
n

g
es

te
d

 f
lo

w
s

OneShot
GI
RR
SWAN

(a) DCN scenario

1K 2K 3K 4K 5K 6K
0

1000

2000

3000

4000

5000

The number of flows

T
h

e
n

u
m

b
er

 o
f

co
n

g
es

te
d

 f
lo

w
s

OneShot
GI
RR
SWAN

(b) WAN scenario

Fig. 6. The number of congested flows.

1K 2K 3K 4K 5K 6K
0

500

1000

1500

2000

2500

The number of flows

C
o

n
tr

o
l o

ve
rh

ea
d

One Shot
GI
SWAN

(a) DCN scenario

1K 2K 3K 4K 5K 6K
0

500

1000

1500

2000

2500

The number of flows

C
o

n
tr

o
l o

ve
rh

ea
d

One Shot
GI
SWAN

(b) WAN scenario

Fig. 7. Control overhead during update.

0 4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

Update time (second)

C
D

F

One Shot
GI
SWAN

(a) DCN scenario

0 4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

Update time (second)

C
D

F

One Shot
GI
SWAN

(b) WAN scenario

Fig. 8. Update time.

works by iteratively solving a series of LPs until a congestion-
free update plan is found, and cannot take the number of
intermediate stages as input. Thus it cannot be used to solve
(2), and we only include it for comparing the maximum
number of rules and update time.

C. Basic Performance

We study the maximum link congestion generated by One
Shot and the performance of our algorithms—RR and GI—
in minimizing congestion comparing to OPT. Fig. 5(a) and
Fig. 5(b) show the measured maximum link congestion, where
the results of RR, GI and OPT are produced with 5 in-
termediate stages. Both GI and RR can effectively decrease
congestion: GI and RR decrease link congestion by 67% and
60% respectively compared to One Shot. Furthermore, GI
consistently outperforms RR by up to 12%, and provides near-
optimal performance compared to OPT.

Fig. 6 shows the number of congested flows during the
entire update process. We can see that, as the number of
flows increases, One Shot yields significantly more congested
flows compared to GI and RR. Specifically, in Fig. 6(a), the
number of congested flows for One Shot, RR and GI is 1600,
910 and 620, respectively, in the DCN scenario when the
number of flows is 3000. Looking more closely into Fig. 6(a)
and Fig. 6(b), the improvement for GI in Fig. 6(a) is more
significant: it decreases the number of congested flows by
20% from RR on average. This demonstrates that GI takes
full advantage of the richly connected fat-tree topology and
significantly mitigates congestion by rerouting flows onto less
congested paths.

Fig. 7 shows the comparison of control overhead during
update. We define control overhead as the number of rules
that needs to be touched (added/removed/modified) during the
update. Essentially this measures the number of operations, as
well as the number of flow table entries required to perform

the update. One Shot does not introduce intermediate stages
and needs the least update operations. We also observe that
SWAN induces more control overhead than GI. In Fig. 7(a),
when the number of flows is 6000, the control overhead of
SWAN is almost twice as that of GI. The reason is that SWAN
usually takes more stages to transition the state without any
congestion. In contrast, GI uses less intermediate stages with a
small extent of congestion and saves a lot of update operations.
Note that these results become inaccurate for switches that
apply longest prefix matching or wild-card rules. However,
such rules are increasingly being substituted with exact match
rules in SDN [13].

VII. IMPLEMENTATION

Besides simulation, we develop a prototype of our al-
gorithms using Mininet 2.0 [17]. We use Floodlight 0.9
controller [1] running on a PC with an Intel i5-2400 quad-
core processor. Switches are emulated by Mininet and run
Openflow v1.0. The forwarding rules are installed and updated
via Floodlight’s static flow pusher API.

We now describe how to perform network update using our
algorithms in our implementation. The procedure is shown in
Algorithm 4. We first obtain a solution to (1) using the greedy
algorithm (line 1). Next we sequentially examine every stage
s of the solution and determine what forwarding rules should
be added to which switches by comparing the routing in stage
s to its adjacent stage s+ 1. To ensure consistency, we adopt
the two-phase commit protocol proposed in [25], which uses
VLAN ID in packet headers to index stages. In the first phase
of transition from s to s+1, new rules whose matching fields
use the new VLAN ID corresponding to stage s + 1 (lines
7-10) are added. During this phase, flows are still forwarded
according to existing rules as packets are still stamped with
the VLAN ID of stage s. Once the update is done for all
switches, the protocol enters the second phase when we stamp

Algorithm 4 Performing Minimum Congestion Update
Input: Network topology G = (V,E); the number of intermediate

stage; initial routing {x1f,p} and final routing {xnf,p}.
Output: Update sequence of switch rules.

1: Apply Algorithm 3 and obtain solutions {x̂sf,p} to (1)
2: for s = 1 to n− 1 do
3: V ′ = ∅
4: for each f ∈ F do
5: for each p ∈ P (f) do
6: if x̂s+1

f,p 6= x̂sf,p then
7: for each switch v in path p do
8: Add new rules to forwarding table or group table

corresponding to flow f in switch v. The new rules
use new VLAN tag corresponding to stage s + 1
to match packets.

9: V ′ = V ′ ∪ v
10: end for
11: end if
12: end for
13: end for
14: for each v ∈ V ′ do
15: if switch v is connected by host then
16: Modify the rules in switch v such that it can stamp every

incoming packet with a new VLAN tag corresponding
to stage s+ 1.

17: end if
18: end for
19: end for

every incoming packet with the new VLAN ID (lines 14-18).
At this point the new rules become functional, and old rules
are removed by the controller.

We conduct experiments of network update to handle device
failures in both DCN and WAN. The topologies used here
are the same as illustrated in Fig. 4(a) and Fig. 4(b). Link
bandwidth is set to 10 Mb with 1 ms delay in Mininet. Port
buffer size is 1 Mb. We use iperf to generate flows with an
average size of 5 Mb. A flow’s source and destination switches
are chosen randomly. We use the link down command in
Mininet to simulate link failures. We run our algorithms and
SWAN, respectively, in the controller to update routing, and
measure the total update time T . It includes two parts: time
for generating an update plan Tgen and time for updating for-
warding rules Tupdate. We measure Tupdate using OpenFlow
arrier messages [3]. Specifically, from stages s to s+1, we first
record the starting time Ts, then send the update messages, and
finally send the barrier request message. Upon receiving the
barrier response message, we obtain the finish time Ts+1. In
addition, we measure the average delay between the controller
and the switch Tdelay using the hello messages [3], which
is subtracted from the calculation.

T = Tgen + Tupdate = Tgen +

n−1∑
s=1

(Ts+1 − Ts − Tdelay)

Fig. 8 shows the update time results in response to failures.
In DCN, most updates using GI finish within three seconds
while SWAN takes eight seconds. In WAN, GI uses three
seconds while SWAN takes seven. One Shot, as the lower
bound of update time, is also implemented in our experiments.

Tgen is equal to zero for One Shot since it does not require
solving LP. We observe that the update time of GI is close to
One Shot especially in WAN scenario.

VIII. CONCLUSION

In this paper, we studied the problem of minimizing
transient congestion during network update in data center
networks. We formulated it as an integer linear program,
and proposed two algorithms to solve the NP-hard problem.
Experimental and simulation results show that our algorithms
mitigates transient congestion and reduces update time signif-
icantly.

ACKNOWLEDGMENT

We thank the anonymous reviewers and our shepherd
Lachlan Andrew for their helpful comments on drafts of
this paper. The work is partly supported by HKRGC-ECS
21201714, CityU HK Start-up grant 7200366, China 973
projects (2014CB340303) and China NSF grants (61472252,
61133006, 61321491).

REFERENCES

[1] Floodlight. http://floodlight.openflowhub.org/.
[2] Fnss. http://fnss.github.io/.
[3] Openflow switch specification. https://www.opennetworking.org/

images/stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-spec-v1.4.0.pdf.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In SIGCOMM, pages 63–74, 2008.

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan. Data center TCP (DCTCP). In
SIGCOMM, 2010.

[6] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid. A distributed
and robust sdn control plane for transactional network updates. In
INFOCOM, 2015.

[7] S. Chopra and M. R. Rao. The partition problem. Math. Program.,
59:87–115, 1993.

[8] R. Cohen, L. Lewin-Eytan, J. Naor, and D. Raz. On the effect of
forwarding table size on sdn network utilization. In INFOCOM, 2014.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms (3. ed.). MIT Press, 2009.

[10] J. Gettys and K. M. Nichols. Bufferbloat: dark buffers in the internet.
Communication of the ACM, 55(1):57–65, 2012.

[11] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. Achieving high utilization with software-driven
wan. In SIGCOMM, pages 15–26, 2013.

[12] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat. B4: experience with a globally-deployed software defined
wan. In SIGCOMM, pages 3–14, 2013.

[13] X. Jin, H. H. Liu, X. Wu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer. Dynamic scheduling of network updates.
In SIGCOMM, pages 539–550, 2014.

[14] J. P. John, E. Katz-Bassett, A. Krishnamurthy, T. E. Anderson, and
A. Venkataramani. Consensus routing: The internet as a distributed
system. (best paper). In NSDI, pages 351–364, 2008.

[15] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula. Calendaring
for wide area networks. In SIGCOMM, pages 515–526, 2014.

[16] S. Kandula, S. Sengupta, A. G. Greenberg, P. Patel, and R. Chaiken.
The nature of data center traffic: measurements & analysis. In IMC,
pages 202–208, 2009.

[17] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid
prototyping for software-defined networks. In HotNets, page 19, 2010.

[18] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez. Inter-datacenter
bulk transfers with netstitcher. In SIGCOMM, 2011.

[19] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. A. Maltz.
zupdate: updating data center networks with zero loss. In SIGCOMM,
pages 411–422, 2013.

[20] A. Ludwig, J. Marcinkowski, and S. Schmid. Scheduling loop-free
network updates: It’s good to relax! In PODC, pages 13–22, 2015.

[21] A. Ludwig, M. Rost, D. Foucard, and S. Schmid. Good network updates
for bad packets: Waypoint enforcement beyond destination-based routing
policies. In HotNets, pages 1–7, 2014.

[22] N. McKeown, T. Anderson, H. Balakrishnan, G. M. Parulkar, L. L.
Peterson, J. Rexford, S. Shenker, and J. S. Turner. Openflow: enabling
innovation in campus networks. Computer Communication Review,
38(2):69–74, 2008.

[23] A. Noyes, T. Warszawski, P. Cerný, and N. Foster. Toward synthesis of
network updates. In SYNT, pages 8–23, 2014.

[24] S. Raza, Y. Zhu, and C.-N. Chuah. Graceful network state migrations.
IEEE/ACM Trans. Netw., 19(4):1097–1110, 2011.

[25] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.
Abstractions for network update. In SIGCOMM, pages 323–334, 2012.

[26] L. Vanbever, S. Vissicchio, C. Pelsser, P. François, and O. Bonaven-
ture. Lossless migrations of link-state igps. IEEE/ACM Trans. Netw.,
20(6):1842–1855, 2012.

[27] D. P. Williamson and D. B. Shmoys. The Design of Approximation
Algorithms. Cambridge University Press, 2011.

APPENDIX A
PROOF OF THEOREM 2

Proof: To begin with, we present some related properties
and definitions to facilitate the proof.

Property 4: If X and Y are nonnegative random variables,
then E [max(X,Y)] ≤ E[X] + E[Y] holds [9].

Definition 4: Let Xs
f,e be a binary random variable that

indicates whether flow f ∈ Fsp is routed through link e in
stage s. If f passes through link e in stage s, Xs

f,e = 1,
otherwise Xs

f,e = 0.
Definition 5: Let ze =

∑
f∈Fmp

df max(x̃sf,e, x̃
s+1
f,e),

which represents the maximum load on link e for f ∈ Fmp
during the transition from stage s to stage s+ 1.

Definition 6: Let Xe =
∑
f∈Fsp

df max(Xs
f,e, X

s+1
f,e)+ ze

be a random variable that indicates the maximum load on link
e during the transition from stage s to stage s+ 1.

According to Property 4, Definition 6, and constraint (1a),

E[Xe] =
∑
f∈Fsp

dfE
[
max

(
Xs
f,e, X

s+1
f,e

)]
+ ze

≤
∑
f∈Fsp

df
(
E
[
Xs
f,e

]
+ E

[
Xs+1
f,e

])
+ ze

=
∑
f∈Fsp

df
∑

p∈P (f):e∈p

(
E
[
Xs
f,p

]
+ E

[
Xs+1
f,p

])
+ ze

=
∑
f∈Fsp

df
∑

p∈P (f):e∈p

(
x̃sf,p + x̃s+1

f,p

)
+ ze

≤ 2µ∗Ce

Let Ye = Xe

Ce
=
∑
f∈Fsp

df

Ce
max(Xs

f,e, X
s+1
f,e) + ze

Ce
. From

above, E[Ye] ≤ 2µ∗. The random variables {Xs
f,e} are

mutually independent since link e for flow f is chosen
independently in Algorithm 1. Therefore, Ye, the sum of
random variables {Xs

f,e}, is independent. Choose δ such that
(1 + δ) = 8 ln k

ln ln k and apply Chernoff bound [27],

Pr

[
Ye ≥

8 ln k

ln ln k
2µ∗
]
≤
(

8 ln k

e ln ln k

)−8 ln k
ln ln k

≤ 1

k4
.

There are k switches in the network, so the number of links
between nodes is at most k2. By union bound,

Pr

[
max
e∈E

Ye ≥
8 ln k

ln ln k
2µ∗
]
≤
∑
e∈E

Pr

[
Ye ≥

8 ln k

ln ln k
2µ∗
]
≤ 1

k2
.

APPENDIX B
PROOF OF THEOREM 3

Proof: Suppose φ({α1
f,p} ∨ {β̂2

f,p} ∨ . . . ∨ {β̂
n−1
f,p } ∨

{γnf,p}) > φ({α1
f,p} ∨ {β2

f,p} ∨ . . . ∨ {βn−1f,p } ∨ {γnf,p})
and {β̂2

f,p}, {β̂3
f,p}, . . . , {β̂

n−1
f,p } is the optimal intermediate

stage with the least transient congestion. Hence, we obtain
max(φ({α1

f,p}∨{β2
f,p}), φ({β2

f,p}∨{β3
f,p}), . . . , φ({β

n−1
f,p }∨

{γnf,p})) ≥ max(φ({α1
f,p} ∨ {β̂2

f,p}), φ({β̂2
f,p} ∨

{β̂3
f,p}), . . . , φ({β̂

n−1
f,p }∨{γnf,p})). Without loss of generality,

we assume φ({α1
f,p} ∨ {β2

f,p}) is the maximum value
in the left side. We thus have φ({α1

f,p} ∨ {β2
f,p}) ≥

φ({α1
f,p} ∨ {β̂2

f,p}), φ({α1
f,p} ∨ {β2

f,p}) ≥ φ({β̂2
f,p} ∨

{β̂3
f,p}), . . . , φ({α1

f,p} ∨ {β2
f,p}) ≥ φ({β̂n−1f,p } ∨ {γnf,p}).

From Property 1 and Property 3, φ({α1
f,p} ∨ {β2

f,p}) ≥
φ({α1

f,p} ∨ {β̂2
f,p} ∨ . . . ∨ {β̂n−1f,p } ∨ {γnf,p}) >

φ({α1
f,p}∨{β2

f,p}∨ . . .∨{β
n−1
f,p }∨{γnf,p}). This contradiction

concludes the proof, since we know that φ({α1
f,p}∨{β2

f,p}) ≤
φ({α1

f,p} ∨ {β2
f,p} ∨ . . . ∨ {β

n−1
f,p } ∨ {γnf,p}) must hold.

APPENDIX C
PROOF OF LEMMA 1

Proof: In a τ -pod fat-tree, each switch has τ ports. There
are τ/2 aggregation switches and τ/2 edge switches in each
pod. Core switches connect aggregation switches across pods.
A 4-pod fat-tree topology is illustrated in Fig. 9. Aggregation
and edge switches in pod j ∈ {1, 2, . . . , τ} are denoted by
Aggji and Torji , respectively, where i ∈ {1, 2, . . . , τ/2}. Core
switches, which connect aggregation switches, are denoted by
Coriu, where u ∈ {1, 2, . . . , τ/2}.

Suppose there does not exist path p′ such that
φ({D∗f,e|e∈p′} ∨ β

s∗

f∗,p′) < 4µ̂. We denote source and desti-

nation switch of flow f∗ by Torpodih and Tor
podj
g . Let Eh

(Eg) be the set of links incident to switch Torpodih (Tor
podj
g).

Let lh (lg) be the number of links in set Eh (Eg) such
that φ({D∗f,e}) > 4µ̂, where e ∈ Eh(Eg). Let l′h (l′g) be
the number of links in set Eh (Eg) such that 4µ̂ − d∗ ≤
φ({D∗f,e}) ≤ 4µ̂, where e ∈ Eh(Eg) and d∗ = df

∗
/Ce. We

denote by Fh the total amount of flow in all links incident to
switch Torpodih , and thus Fh > lh ·4µ̂·Ce+l′h (4µ̂− d∗)·Ce ≥
lh · 4µ̂ · Ce + l′h (4µ̂− µ̂) · Ce. Hence,

Fh > 4lhµ̂Ce + 3l′hµ̂Ce (3)

Now we consider the lower bound of µ̂, which is the case
that the total amount of flow Fh are evenly splitted in τ/2
links incident to Torpodih .

µ̂Ce ≥
2Fh
τ

(4)

1
1Agg

1
1Cor

1
2Agg

1
1Tor 1

2Tor

2
1Agg 2

2Agg

2
1Tor 2

2Tor

3
1Agg 3

2Agg

3
1Tor 3

2Tor

4
1Agg 4

2Agg

4
1Tor 4

2Tor

1
2Cor 2

2Cor2
1Cor

Pod1 Pod2 Pod3 Pod4

Fig. 9. 4-pod fat-tree topology

Combining (3) and (4), τ/2 > 4lh + 3l′h, we obtain

τ

6
>

4

3
lh + l′h (5)

We denote by l′′h (l′′g) the number of links in set Eh (Eg)
such that φ({D∗f,e}) < 4µ̂ − d∗, where e ∈ Eh(Eg). By
inequality (5), we have

l′′h =
τ

2
− lh − l′h =

τ

2
− 4

3
lh − l′h +

lh
3
>
τ

3
+
lh
3

(6)

For the same reason, τ/6 > (4/3)lg + l′g . Hence,

l′′g =
τ

2
− lg − l′g >

τ

3
+
lg
3

(7)

According to whether switch Torpodih and Tor
podj
g are in

the same pod, we prove Lemma 1 in cases.
Case 1: source switch Torpodih and destination switch

Tor
podj
g are in the same pod, i.e., i = j.

From inequality (6) and (7), we obviously obtain,

l′′h >
2

3
· τ
2
, l′′g >

2

3
· τ
2

We observe that more than 2/3 links incident to Torpodih

have load relative to its capacity less than 4µ̂ − d∗. And so
also is Torpodig . Moreover, The network topology in podi
is a bipartite graph. Hence, there must exist a switch set
A in aggregation layer and constitute a nonemply path set
Pagg = {〈Torpodih Aggpodij Torpodig 〉}, where Aggpodij ∈ A
and |A| > τ/6. Obviously, φ({D∗f,e|e∈p′}) < 4µ̂− d∗, where
p′ ∈ Pagg . We further induce that there exists path p′ ∈ Pagg
such that φ({D∗f,e|e∈p′} ∨ β

s2
f∗,p′) < 4µ̂, which is contrary to

the assumption.
Case 2: source switch Torpodih and destination switch

Tor
podj
g are in the different pods, i.e., i 6= j.

Let Ec be the set of links incident to core switch Corγu.
Let lcor (l′cor) be the number of links in set Ec such that
φ({D∗f,e}) > 4µ̂ (4µ̂−d∗ ≤ φ({D∗f,e}) ≤ 4µ̂), where e ∈ Ec.
Let B be the set of pairs (Aggpodiγ , Agg

podj
γ) in aggregation

layer between podi and podj which are interconnected by
core switch Corγu, such that both φ({D∗f,e′}) < 4µ̂ − d∗

and φ({D∗f,e′′}) < 4µ̂ − d∗, where e′ ∈ {〈Torpodih Aggpodiγ 〉}
and e′′ ∈ {〈Aggpodjγ Tor

podj
g 〉}. Let B′ be the set of pairs

(Aggpodiγ , Agg
podj
γ) in aggregation layer between podi and

podj such that φ({D∗f,e′}) ≥ 4µ̂ − d∗ or φ({D∗f,e′′}) ≥
4µ̂ − d∗, where e′ ∈ {〈Torpodih Aggpodiγ 〉} and e′′ ∈
{〈Aggpodjγ Tor

podj
g 〉}. Let l = (lh+ lg)/2 and l′ = (l′h+ l

′
g)/2,

we obtain

|B′| ≤
lh + l′h + lg + l′g

2
= l + l′

Note that if the assumption holds, the inequality
φ({D∗f,e|e∈p}) ≥ 4µ̂ − d∗ must be satisfied, where

path p ∈ {〈Aggpodiγ CorγuAgg
podj
γ 〉} and aggregation

switch pairs (Aggpodiγ , Agg
podj
γ) ∈ B. Otherwise

flow f∗ can be routed through any path in set
Pcor = {〈Torpodih Aggpodiγ CorγuAgg

podj
γ Tor

podj
h 〉} and

φ({D∗f,e|e∈Pcor
}) < 4µ̂ − d∗. This is a contradiction. Hence,

we must have

lcor+l
′
cor ≥

τ

2
·|B| = τ

2
·
(τ
2
− |B′|

)
≥ τ

2
·
(τ
2
− l − l′

)
(8)

We denote by Fpodi and Fpodj the amount of flow originated
from podi and directed to podj respectively. Fpodi +Fpodj >
lcor · 4µ̂Ce+ l′cor(4µ̂−d∗)Ce ≥ lcor · 4µ̂Ce+ l′cor(4µ̂− µ̂)Ce,
we obtain

Fpodi + Fpodj > 4lcorµ̂Ce + 3l′corµ̂Ce (9)

Consider the following lower bound for µ̂, where the
amount of flow originated from podi and directed to podj
are evenly splitted by (τ/2)(τ/2) links respectively.

µ̂Ce ≥
4Fpodi
τ2

, µ̂Ce ≥
4Fpodj
τ2

(10)

Combining (9) and (10), we have

τ2

2
> 4 · lcor + 3 · l′cor (11)

From (8) and (11), we have that

τ2

2
> 3 · (lcor + l′cor) + lcor ≥ 3 · τ

2
· (τ

2
− l − l′) + lcor

By (6) and (7), we derive that

τ2

2
> 3 · τ

2
· (τ

3
+
l

3
) + lcor >

τ2

2
+
τ · l
2

+ lcor

Hence,

0 >
τ · l
2

+ lcor (12)

τ denotes the number of pods in fat-tree topology and
thus τ > 0. Recall the condition that l ≥ 0 and lcor ≥ 0,
we obtain (τ · l)/2 + lcor ≥ 0, which is a contradiction to
(12). Hence, there exists path p′ in fat-tree topology such that
φ({D∗f,e|e∈p′} ∨ β

s2
f∗,p′) < 4µ̂.

