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Abstract—State-of-the-art inter-datacenter WANs rely on cen-
tralized traffic engineering (TE) to improve the network per-
formance, where TE computation is a periodical procedure and
timely performs routing configurations (i.e., enforces TE polices
via add, remove and modify forwarding rules) in response to the
changing network conditions. The TE computation determines
the routing configurations corresponding to the current network
conditions and the network update operations change the routing
configurations from last TE to current TE solution. Existing
works take centralized TE computation and network update as
two individual optimization procedures, which inevitably leads
to suboptimal solution in the long run. In this paper we initiate
the study of online joint optimization on TE computation and
network update with the objective of minimizing the sum of TE
cost and network update cost. We formulate this problem as
an optimization program and propose a set of provable online
algorithms with rigorous competitive and regret analysis. Trace-
driven simulations on two empirical topologies demonstrate that
our algorithms can significantly decrease the total cost.

I. INTRODUCTION

Software defined networking (SDN), as a state-of-the-art

implementation of centralized traffic engineering (TE), is

increasingly adopted in inter-datacenter WANs to orchestrate

the data transmission. Since an inter-datacenter WAN is a

highly expensive network infrastructure, the centralized TE

needs to periodically run an optimization program to improve

network performance. For example, Google [1], [2], [3] and

Microsoft [4] optimize the data plane performance frequently

via timely dispatching TE plan to the data plane. Once the TE

computation in the current time interval is done, the network

update operations can be subsequently performed to switch

the route from last to current TE configurations.

TE plays an important role when scheduling inter-datacenter

WANs. Specifically, SWAN [4] and B4 [1], [2], [3] use the

max-min fairness principle to improve the network throughput.

NUMFabric [5] takes different utility functions [6] to cap-

ture the correlation between the allocated bandwidth resource

and the quality-of-service. Calendaring [7] and Amoeba [8]

strengthen the performance especially for deadline-aware ap-

plications. In general, the TE optimization can be abstracted

as a fundamental minimum-cost flow problem [9], where

the cost here can characterize the network delay, link load,

flow completion time, deadline missing ratio, etc. Network

update operations are triggered periodically along with the TE

computation and change the routes between two adjacent TE

configurations [10].

Existing works take centralized TE computation [11], [12],

[13], [14] and network update [4], [15], [16], [17], [18]

as two individual optimization procedures, which inevitably

leads to suboptimal solution in nature. Essentially, directly

optimizing TE objective [19] such as minimizing transmission

delay, minimizing flow completion time etc. can produce a TE

solution with minimum cost at each single time slot. However,

it may not perform well in the long run with continuous

time slots, especially in terms of competitive and regret

analysis [20]. Furthermore, if network update cost cannot be

respected and fails to integrate into TE optimization, frequent

network update procedure between two adjacent TE solutions

can bring route oscillation [21] and incur a large amount of

unnecessary operations resulting from adding, removing or

modifying the route in the data plane. This essentially drives

the network operators to jointly optimize TE computation and

network update procedure. Furthermore, network update plan

between two adjacent TE solutions is usually not unique [16],

which can navigate network operators a broader optimization

space when designing our online framework. To the best of

our knowledge, our work proposes the first online optimization

framework that jointly considering TE cost and network update

cost, which has not been done before.

In this paper we propose an online joint optimization

framework on TE computation and network update that aims

to minimize the total cost, i.e., the sum of TE cost and network

update (rerouting) cost, in the long run. The resulting TE

solutions determine how the flows are routed in current time

interval and the network update plan indicates which routes

need to be changed from last to current TE solution. These two

procedures need to be jointly optimized in the time horizon to

improve the whole performance.

Our first contribution is that we propose an online optimiza-

tion framework for jointly minimizing TE cost and network

update cost in the time horizon. Generally speaking, given

the inter-datacenter WAN topology and the available tunnels

for each ingress-egress switch pairs, the optimization program

aims to determine how each flow is splitted at the ingress

switch onto the available tunnels (TE solution) and which

flow needs to be rerouted (network update plan) such that

the network capacity constraints are respected (Sec. II). Here

the flow is an aggregate of all TCP flows between the same

ingress-egress switch pair.

Our second contribution is that we develop a set of provable

online algorithms to solve our problem and conduct rigorous
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competitive and regret analysis. As the optimization on the

network update cost is coupled by two adjacent TE time

slots, we exploit regularization techniques to stabilize the

solution and decouple the original problem into a series of

subproblems, where each subproblem can be solved in a

single time slot. We first propose a competitive regularization-

based algorithm (RA) where the demand of each flow can be

accurately predicted in one future time slot. Furthermore, we

relax the prediction accuracy and propose receding horizon

control-based (RHC) and averaging fixed horizon control-

based (AFHC) algorithms that allow the network operators

to predict the flow demand in multiple future time slots with

bounded prediction errors (Sec. III).

Our third contribution is that we evaluate our algorithms

using two empirical topologies with real dataset. The candidate

tunnel set is produced by k-shortest paths, equal-cost multipath

routing, Räcke’s oblivious routing and edge-disjoint k-shortest

paths, respectively. We first use the time series to predict

the flow demand and then obtain the solutions by iteratively

solving each subproblem. Evaluation results show that RA,

RHC and AFHC can reduce 12.1%, 12.3% and 15.4% cost

on average compared with state-of-the-art and can perfectly

match the theoretical analysis (Sec. IV).

II. AN ONLINE OPTIMIZATION FRAMEWORK

We introduce an online optimization framework in this

section, which aims to minimize the TE cost and network

update cost in the long run.

A. A Motivating Example

The traditional centralized TE periodically reroutes the traf-

fic to optimize the performance once the network conditions

change such as traffic matrix variations or the switches fail

in the data plane, where the TE is usually informed by this

event in a proactive manner [2], [3]. Consider the motivating

example in Fig. 1, there are totally seventeen switches and

twenty links in the network. The capacity of each link is

one unit. There are three aggregate flows colored red, blue

and green, respectively and their demands vary with time. We

assume each flow’s demand can be accurately predicted within

one future time slot in our motivating example. We will relax

this assumption in our algorithm design section since it can

be replaced by an estimation of the real demand with bounded

prediction errors.

Specifically, we can see that in Fig. 1, the flow FA orig-

inates from switch R3 to switch R7, where it has three

available tunnels 〈R3, R1, R2, R7〉, 〈R3, R4, R5, R6, R7〉 and

〈R3, R8, R9, R7〉. The demand of flow FA increases from

one unit at t0 to two units at t1, and drop to one unit at

t2. The flow FB originates from switch R10 to switch R11,

where it has two available tunnels 〈R10, R8, R9, R11〉 and

〈R10, R12, R13, R11〉. The demand of FB keeps the same at t0,

t1 and t2. The flow FC originates from switch R14 to switch

R15, where it has two available tunnels 〈R14, R12, R13, R15〉
and 〈R14, R16, R17, R15〉. The demand of FC increases from

one unit at t1 to two units at t2. Without loss of generality,

we assume that the TE objective in Fig. 1(a) aims to minimize

the total cost, i.e., the product of flow demand and the number

of hops that it passes through. At t0, the cost incurred by

FA, FB and FC is 1 × 3 = 3, 1 × 3 = 3, and 1 × 3 = 3,

where each flow is routed through on the tunnel with the

minimum number of hops. Then the demand of flow FA

increases to two units at t1. Accordingly the TE reroutes the

flow FB and FC to make the link 〈R8, R9〉 accommodate the

increased demand of flow FA without congestion. Thus the

flow FA can be splitted onto two tunnels 〈R3, R1, R2, R7〉
and 〈R3, R8, R9, R7〉, one unit flow demand on each tunnel.

The flow FA prefers the tunnel 〈R3, R8, R9, R7〉 to the tunnel

〈R3, R4, R5, R6, R7〉 as the former has less number of hops

and is with less TE cost. That’s why the flow FA is not routed

through the tunnel 〈R3, R4, R5, R6, R7〉 at t1. Hence, the cost

incurred by FA, FB and FC at t1 becomes 1× 3+1× 3 = 6,

1×3 = 3, and 1×3 = 3. Next at t2, the demand of FA drops

to one unit and the demand of FC increases to two units.

The TE reroutes the flow FB from 〈R10, R12, R13, R11〉 to

〈R10, R8, R9, R11〉 to make the link 〈R12, R13〉 accommodate

the increased demand of flow FC and simultaneously ensures

that each link is congestion-free. The cost incurred by FA, FB

and FC at t2 is 1× 3 = 3, 1× 3 = 3 and 1× 3 + 1× 3 = 6.

TABLE I
COST COMPARISONS IN FIG. 1.

Strategies
TE cost Rerouting cost

Total cost
t0 t1 t2 t0 → t1 t1 → t2

Traditional TE 9 12 12 15 12 60
Our approach 9 13 12 4 7 45

However, traditional TE computation only focuses on TE

cost minimization in a single time slot and does not take

network update (rerouting) cost into consideration. The net-

work update operations involve adding, removing and modi-

fying forwarding rules in the data plane. Frequently switching

forwarding rules can lead to route oscillation and degrade

application performance. Hence, it is necessary to exert a joint

optimization on TE computation and network update, aiming

to minimize the total cost, i.e., the sum of TE cost and network

update cost. We use our example in Fig. 1(b) to illustrate how

our approach works. The main differences between Fig. 1(a)

and Fig. 1(b) are the route configurations resulting from TE

at t1. At this moment, our approach splits flow FA on two

paths 〈R3, R1, R2, R7〉 and 〈R3, R4, R5, R6, R7〉, one unit

flow demand on each path. At the same time, we keep the route

of flow FB unchanged. This inevitably increases the TE cost

since the path 〈R3, R4, R5, R6, R7〉 that the flow FA passes

through has more number of hops. But we avoid the frequent

rerouting behavior of flow FB and thus decrease the network

update cost. For our approach, the TE cost at t0, t1 and t2 is

9, 13 and 12, respectively. The network update cost from t0 to

t1 is 1× 4 = 4, while that from t1 to t2 is 1× 4+ 1× 3 = 7.

Table I shows the cost comparisons for traditional TE and our

approach, from which we can observe that our approach can

reduce total cost by 25%. Note that here the unit of TE cost

and network update cost are both one. For more general cases,
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Fig. 1. A motivating example for (a) traditional TE and (b) our approach.

we will introduce two parameters α and β to normalize these

two different costs in the following section.

B. Network Model

Before presenting the problem definitions, we first discuss

our network model. A network is a directed graph G = (V,E),
where V is the set of switches and E the set of links with

capacities Le for each link e ∈ E. F represents the set of

aggregate flows in the network and each flow is associated with

a demand dp,t. Note that we slightly abuse the notation and use

the index p to refer to the flow f for convenience. Essentially,

each ingress-egress switch pairs correspond to one aggregate

flow and each aggregate flow corresponds to a available tunnel

set. This aggregate flow will be splitted among the available

tunnels according to xp,t (unknown variables). For example,

if an ingress-egress switch pair has three tunnels p1, p2, p3 at

t and the flow demand for this ingress-egress switch pair is d,

then dp1,t = dp2,t = dp3,t = d. Accordingly, the demand on

each tunnel is the product between dpi,t and xp,t. The flows

TABLE II
KEY NOTATIONS IN THIS PAPER.

Input F The set of aggregate flows f from the source-
destination switch pairs in the network

V The set of switches v
E The set of links e
G The directed network graph G = (V,E)
Le The capacity of link e

P (f, t) The set of tunnels for flow f at t
P The set of tunnels for all flows in the network.

i.e., P = ∪f∈F,t∈TP (f, t)
dp,t The total demand of flow f at t, where p ∈

P (f, t)
αp,t The coefficients to normalize rerouting cost
βp,t The coefficients to normalize TE cost
c A configurable parameter

Output xp,t The allocated bandwidth for flow f at tunnel p
yp,t The absolute value of difference between two

variable xp,t−1 and xp,t

enter the network in an online manner, where the flow demand

can vary with the time and it can be viewed as zero once

the transmission of this flow is terminated. The flow demand

in one future time slot can be predicted [4], [1]. We will

discuss more general cases that the flow demand prediction

has bounded errors in the next section. P (f, t) represents the

set of tunnels for flow f at t and P represents the set of

tunnels for all flows in the network. The reason why we add

the index t in P (f, t) is that the number of tunnels may vary

with time due to unexpected link failures. αp,t and βp,t are

the coefficients which can normalize rerouting cost and TE

cost, respectively. For convenience, we summarize important

notations in Table II.

C. Problem Formulation

Based on the network model above, we begin to formulate

our problem. The program (1) is a joint optimization on the

network update and traffic engineering, i.e., minimize the sum

of the rerouting cost and the TE cost in the long run such

that the network capacity constraints can be respected. The

available tunnel set is given and how the flows are routed

onto the available tunnels needs to be determined by TE. We

use two-phase update protocol to guarantee consistency when

rerouting flows.

minimize

T∑
t=1

∑
p∈P

αp,typ,t +

T∑
t=1

∑
p∈P

βp,txp,t (1)

subject to
∑

p∈P (f,t)

xp,t ≥ 1, ∀f ∈ F, ∀t ∈ T, (1a)

∑
p|e∈p

dp,txp,t ≤ Le,t,

∀e ∈ E, ∀t ∈ T,∀p ∈ P, (1b)

yp,t ≥ |xp,t − xp,t−1|, ∀p ∈ P, ∀t ∈ T, (1c)

xp,t ≥ 0, ∀p ∈ P, ∀t ∈ T. (1d)
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The first term in the objective function captures the rerouting

cost, i.e., the cost that we perform network update to reroute

flows from time slot t − 1 to t. The second term is the

TE cost that can characterize the transmission delay or the

path cost at time slot t. Constraint (1a) is the flow demand

conservation constraint, indicating how the flow is splitted at

the ingress switch among its available tunnel set, which can

be implemented using group table with select type [22].

Constraint (1b) indicates that the load at each link e should be

less than or equal to link capacity Le,t. In the constraint (1c),

if the difference between two variables xp,t and xp,t−1 is

larger than zero, the rerouting cost comes from the operations

of adding or modifying the rules in Openflow flow table

or group table. Otherwise, it comes from the operations of

deleting the rules. Without loss of generality, we can remove

the absolute value sign and use max function instead in Λ1(x)
of program (2). This can be fixed by folding the cost into

the coefficient αp,t. Hence, we rewrite the program (1) to the

program (2) by introducing the max function and thus the

variables yp,t can be removed. For convenience, we denote

Λ1(x) and Λ2(x) as the following.

Λ1(x) =
T∑

t=1

∑
p∈P

αp,t max{0, xp,t − xp,t−1}

Λ2(x) =
T∑

t=1

∑
p∈P

βp,txp,t

minimize Λ1(x) + Λ2(x) (2)

subject to (1a), (1b), (1d).

Now we can see that the constraint (1b) makes the program (2)

harder to solve, i.e., it is difficult to decouple the original

problem into a series of subproblems. Hence, we lift this con-

straint into the objective function and transform program (2) to

program (3). We will prove that the violation of constraint (1b)

is bounded.

Λ′
2(x) =

T∑
t=1

∑
p∈P

⎛
⎝βp,t + c · dp,t

∑
e∈p

1

Le,t

⎞
⎠xp,t

minimize Λ1(x) + Λ′
2(x) (3)

subject to (1a), (1d). (3a)

III. ONLINE ALGORITHMS

In this section we develop a set of provable online algo-

rithms to solve our problem and conduct rigorous competitive

and regret analysis. Inspired by [23], [24], we first develop

a regularization-based algorithm where each flow’s demand

can be accurately predicted in a future time slot. Furthermore,

we develop two algorithms — a RHC-based algorithm and an

AFHC-based algorithm, which can predict the flow demand

in multiple future time slots with bounded prediction errors.

A. Accurate Prediction in One Single Step

minimize
1

η

∑
p∈P

αp,t

((
xp,t +

ε

n

)
ln

(
xp,t +

ε
n

xp,t−1 + ε
n

)
− xp,t

)

+

T∑
t=1

∑
p∈P

⎛
⎝βp,t + c · dp,t

∑
e∈p

1

Le,t

⎞
⎠xp,t (4)

subject to (1a), (1d).

We first discuss the case that the flow demand dp,t can

be accurately predicted in a future time slot. We introduce

relative entropy function [25] to regularize the objective in

the program, i.e., replace the max function with a logarithmic

function. We transform our program to the above program (4)

and solve it in an iterative way using Algorithm 1.

Algorithm 1: A Regularization-based Algorithm

Input : The parameters ε > 0, η = ln(1 + n
ε
) and c > 0.

Output: The solutions {x̃p,t}
1 Initialize x̃p,0 = 0, ∀p ∈ P.
2 for t = 1 → T do
3 Obtain the solution {x̃p,t} via substituting {x̃p,t−1} into the

program (4), i.e., solving the program (4) iteratively.

Before analyzing the performance of Algorithm 1, we first

introduce related definitions.

Definition 1. Let SL∗ and SL be the objective function
value of program (2) and program (3) when obtaining {x̃p,t}
from Algorithm 1, i.e., SL∗ = Λ1(x̃p,t) + Λ2(x̃p,t) and
SL = Λ1(x̃p,t) + Λ′

2(x̃p,t)

Definition 2. Let OPT ∗ and OPT be the optimal solution of
program (2) and program (3).

Definition 3. Let {x∗
p,t} be the optimal solutions in pro-

gram (2), i.e., OPT ∗ = Λ1(x
∗
p,t) + Λ2(x

∗
p,t)

Lemma 1. [25] SL ≤ τOPT , where τ = (1+ε′) log(1+ k
ε′ ),

ε′ = εn
k , k = maxf,t |Pf,t|.

Remark: Lemma 1 indicates that Algorithm 1 can produce a

solution with constant competitive ratio to program (3) when

using the regularization-based decomposition.

Theorem 1. Algorithm 1 is τ · (c ·M +1)-competitive and the
average load violation on each link is bounded by τ

(
1

c·m + 1
)

in time horizon, i.e., Algorithm 1 outputs the solutions {x̃p,t}
that satisfy the following two conditions:
(R1): SL∗ ≤ τ · (c ·M + 1) ·OPT ∗

(R2):
∑T

t=1

∑
e∈E

1
Le,t

∑
p|e∈p dp,tx̃p,t ≤ τ

(
1

c·m + 1
) |T ||E|

where τ = (1+ε′) log(1+ k
ε′ ), M = maxp,t

{
dp,t

∑
e∈p

1
Le,t

βp,t

}

and m = minp,t

{
dp,t

∑
e∈p

1
Le,t

αp,t+βp,t

}
.

Proof. We first prove the condition (R1). From Lemma 1, we

obtain
SL∗ ≤ SL ≤ τ ·OPT (5)
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According to Definition 2 and Definition 3, we can know that

x∗
p,t is the optimal solution in program (2). Hence, it is a

feasible solution in program (3).

OPT ≤
( T∑

t=1

∑
p∈P

αp,t max{0, x∗
p,t − x∗

p,t−1}

+
T∑

t=1

∑
p∈P

(
βp,t + c · dp,t

∑
e∈p

1

Le,t

)
x∗
p,t

)

≤ (cM + 1)

⎛
⎝ T∑

t=1

∑
p∈P

αp,t max{0, x∗
p,t − x∗

p,t−1}+

T∑
t=1

∑
p∈P

βp,tx
∗
p,t

⎞
⎠

= (cM + 1)OPT ∗
(6)

Combining the equation (5) and (6), the condition (R1) holds.

Next we begin to prove that the condition (R2) holds. The

average link load B̄ in the time horizon can be defined as:

∑T
t=1

∑
e∈E

1
Le,t

∑
p|e∈p dp,tx̃p,t

|T ||E| =

∑T
t=1

∑
p∈P dp,t

∑
e∈p

1
Le,t

x̃p,t

|T ||E|
(7)

Similarly, from Lemma 1 and Definition 3, we obtain

SL ≤ τ ×OPT

≤ τ(
T∑

t=1

∑
p∈P

αp,t max{0, x∗
p,t − x∗

p,t−1}

+

T∑
t=1

∑
p∈P

(βp,t + c · dp,t
∑
e∈p

1

Le,t
)x∗

p,t)

≤ τ
T∑

t=1

∑
p∈P

⎛
⎝αp,t + βp,t + c · dp,t

∑
e∈p

1

Le,t

⎞
⎠x∗

p,t

≤ τ

(
1

m
+ c

) T∑
t=1

∑
e∈E

1

Le,t

∑
p|e∈p

dp,tx
∗
p,t

(8)

According to Definition 1, we derive that

c

T∑
t=1

∑
p∈P

dp,t
∑
e∈p

1

Le,t
x̃p,t ≤ SL (9)

Combining the inequation (7), (8) and (9), we have

B̄ =
c
∑T

t=1

∑
p∈P dp,t

∑
e∈p

1
Le,t

x̃p,t

c|T ||E| ≤ SL

c|T ||E|

≤ τ

c|T ||E|
(

1

m
+ c

) T∑
t=1

∑
e∈E

1

Le,t

∑
p|e∈p

dp,tx
∗
p,t

≤ τ

(
1

cm
+ 1

)
(10)

Hence, the condition (R2) holds.

Remark: Theorem 1 indicates that Algorithm 1 has also a

constant competitive ratio to program (1) and (2) and the

violation of the constraint (1b) is bounded. Note that we

can make the constraint (1b) feasible by scaling down all

allocated bandwidth, since a (γ1,γ2)-competitive algorithm and

a (γ1 ·γ2,1)-competitive algorithm is equivalent in nature [26].

B. Bounded Error Prediction with Multiple Steps

We develop (RHC-based) Algorithm 2 and (AFHC-based)

Algorithm 3 that can predict the flow demand with multiple

steps, i.e., if the prediction window size is w, we can predict

the flow demand at τ+1, · · · , τ+w when the current time slot

is τ . We first give a novel definition of our prediction error

model, which is more practical and significantly different from

that in the prior work [23], [24].

Definition 4. The actual flow demand dp,t and the correspond-
ing prediction dp,t|τ satisfies |dp,t − dp,t|τ | ≤ δ(t− τ), where
δ(t − τ) is a bounded prediction error, dp,t|τ indicates the
predicted flow demand dp,t in the future time t when we are
being at time τ (τ < t).

Remark: δ(t−τ) captures the upper bound of prediction error

and it becomes larger with the increment of the time gap t−τ .

Now we explain the high-level working of Algorithm 2. It

solves a cost minimization problem at t over the prediction

window [t, t + w] and obtains a set of solutions {xFHC
p,t:t+w}

(line 3). We choose the latest solution xFHC
p,t as its value in

each iteration (line 4). For example, when t = 1, we obtain the

solutions {xFHC
p,1:1+w} over the window [1, 1 + w] and choose

xFHC
p,1 . When t = 2, we obtain the solutions {xFHC

p,2:2+w} over

the window [2, 2 + w] and choose xFHC
p,2 , and so on.

Algorithm 2: A RHC-based Algorithm

Input : The prediction window size w.
Output: The solutions {xRHC

p,t }
1 Initialize xRHC

p,0 = 0, ∀p ∈ P.

2 for t = 1 → T do

3 {xFHC
p,t:t+w} = argminx

t+w∑
τ=t

∑
p∈P

[αp,τyp,τ + (βp,τ + c ·
dp,τ |t

∑
e∈p

1
Le,τ

)xp,τ ]

4 xRHC
p,t = xFHC

p,t

Lemma 2. cost(STAnew) − cost(STAold) ≤ c · |E| · |T |,
where cost(STAnew) and cost(STAold) is the objective value
resulting from the solution x∗

p and x̂p, where the definition of
x∗
p and x̂p is shown in Fig. 6.

Proof. From the definition of x∗
p in Fig. 6, we can derive that,

cost(STAnew)− cost(STAold)

=
∑
p∈P

αp,tx
∗
p +

T∑
t=1

∑
p∈P

⎡
⎣βp,t + cdp,t|τ

∑
e∈p

1

Le,t

⎤
⎦x∗

p

−
∑
p∈P

αp,tx̂p −
T∑

t=1

∑
p∈P

βp,tx̂p

≤
T∑

t=1

∑
p∈P

cdp,t|τ
∑
e∈p

1

Le,t
x̂p =

T∑
t=1

c
∑
e∈E

∑
p|e∈p

dp,tx̂p

Le,t

≤ c · |E| · |T |

Remark: The first inequation follows the minimum property

of x∗
p (Fig. 6) and the second follows the constraint (1b).
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Theorem 2. The regret of Algorithm 2 is regret(RHC) =

O
(
T ·max

p,t

{ ∑
p∈P

[
c · δ(0) ∑

e∈p

1
Le,t

+ αp,t+1

]})
+ c|E||T |,

where δ(0) = supt
{|dt − dt|t|

}
.

Proof. The regret of Algorithm 2 is

regret(RHC) = cost(RHC)− cost(STAold) = cost(RHC)

− cost(STAnew) + cost(STAnew)− cost(STAold)
(11)

We define ξi = (xRHC
p,1 , xRHC

p,2 , · · · , xRHC
p,i , x∗

p,i+1 · · · , x∗
p,T )

to affiliate our proof (i = 0, 1, ..., T ), specifically,

ξi,t =

{
xRHC
p,t t ≤ i

x∗
p i < t ≤ T

where x∗
p is defined in Fig. 6. Accordingly, we have

cost(ξ0) = cost(x∗
p,1, x

∗
p,2, · · · , x∗

p,T ) = cost(STAnew(1, T ))

cost(ξT ) = cost(xRHC
p,1 , xRHC

p,2 , · · · , xRHC
p,T ) = cost(RHC)

We introduce {ξ} sequences and the regret can be transformed

to the accumulation of the difference between two adjacent

terms — cost(ξt) and cost(ξt−1), which is used to solve the

optimization at the interval [t, t+1]. From the proof in Fig. 6,

cost(RHC)− cost(STAnew) =

T∑
t=1

cost(ξt)− cost(ξt−1)

≤
T∑

t=1

∑
p∈P

⎡
⎣cδ(0)∑

e∈p

1

Le,t
+ αp,t+1

⎤
⎦

= O
⎛
⎝T ·max

p,t

⎧⎨
⎩

∑
p∈P

⎡
⎣cδ(0)∑

e∈p

1

Le,t
+ αp,t+1

⎤
⎦
⎫⎬
⎭
⎞
⎠

(12)

Lemma 2, inequation (11) and (12) end our proof.

Remark: Theorem 2 indicates that the regret of Algorithm 2

is proportional to δ(0) and cannot be affected by the prediction

window size w.

Since RHC cannot benefit the window size increase espe-

cially when the number of tunnels is more than one. This

motivates us to develop Algorithm 3 to make use of the

look-ahead value. Instead of choosing the latest solution in

Algorithm 2, Algorithm 3 computes an average of solutions

for w + 1 prediction windows as its value (line 4).

Algorithm 3: An AFHC-based Algorithm

Input : The prediction window size w.
Output: The solutions {xAFHC

p,t }
1 Initialize xAFHC

p,0 = 0, ∀p ∈ P.

2 for t = 1 → T do

3 {xFHC(t mod (w+1))
p,t:t+w } = argminx

t+w∑
τ=t

∑
p∈P

[αp,τyp,τ +

(βp,τ + c · dp,τ |t
∑
e∈p

1
Le,τ

)xp,τ ]

4 xAFHC
p,t = 1

w+1

w+1∑
n=1

x
FHC(n)
p,t

Theorem 3. The regret of Algorithm 3 is regret(AFHC) =

O
(
T max

p,t,τ

{ ∑
p∈P

[
αp,τ

w+1 + cδ(t− τ)
∑
e∈p

1
Le,t

]})
+ c|E||T | .

Proof. Without loss of generality, we define x∗
p(t) as the

following equation.

x∗
p(t) =

{
x∗
p t ≥ 1

0 t ≤ 0

From Fig. 7, we can derive that

cost(AFHC)− cost(STAnew)

≤ 1

w + 1

T∑
τ=1−w

[cost(FHC(τ, τ + w))− cost(STAnew(τ, τ + w))]

= O

⎛
⎝T max

p,t,τ

⎧⎨
⎩

∑
p∈P

⎡
⎣ αp,τ

w + 1
+ cδ(t− τ)

∑
e∈p

1

Le,t

⎤
⎦
⎫⎬
⎭
⎞
⎠

(13)

Lemma 2 and inequation (13) end our proof.

Remark: Theorem 3 indicates that the regret of Algorithm 3

is proportional to max{δ} and the performance may be

improved when enlarging the prediction window size w. Since

max{δ} ≥ δ(0), Algorithm 3 is usually more sensitive to

prediction errors than Algorithm 2.

Theorem 4. The competitive ratio of Algorithm 3 is (cM +

1)ρ, where ρ = cost(AFHC(1,T ))
OPT .

Proof. According to line 4 in Algorithm 3, we can obtain(
1−max

t,τ

{
δ(t−τ)
dp,t

})
ρ ≤ 1 + 1

w+1 max
p,t

αp,t

βp,t+cdp,t

∑
e∈p

1
Le,t

.

Combining inequation (6), the competitive ratio of Algo-

rithm 3 is

cost(AFHC(1, T ))

OPT ∗ ≤ (cM + 1)
cost(AFHC(1, T ))

OPT
= (cM + 1)ρ

IV. EXPERIMENTAL EVALUATION

We conduct extensive experiments to evaluate our algo-

rithms in this section.

Setup: We consider two realistic topologies and the traffic

matrices of them are obtained from [27].

• Geant topology: It has 22 nodes and 72 links in total.

The corresponding dataset for this topology is produced

by 15-minute time slots over four months.

• Nobel-Germany topology: It has 17 nodes and 52 links

in total. The corresponding dataset for this topology is

produced by 5-minute time slots over one day.

Benchmark Schemes: We evaluate the following schemes.

• SOL: The SDN application optimization APIs [19]. We

implement SOL with the objective of minimizing the

cost [9] in one single time slot and does not take network

update cost into consideration.

• RA: Our proposed regularization-based algorithm shown

in Algorithm 1.

• RHC: Our proposed RHC-based algorithm shown in

Algorithm 2.

• AFHC: Our proposed AFHC-based algorithm shown in

Algorithm 3.

• OPT: Offline optimum that assumes all future inputs are

known as priori.
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Fig. 2. Normalized total cost variations of different schemes under KSP, ECMP, Oblivious and EDKSP.
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Fig. 3. Maximum link utilization variations of different schemes under KSP, ECMP, Oblivious and EDKSP.

We take the time series [28] to predict the flow demand,

which can be an input of our prediction-based algorithms.

Furthermore, in order to explore the influence resulting from

different tunnels, we use KSP (k-shortest paths), ECMP
(equal-cost multipath routing), Oblivious (Räcke’s oblivious

routing [11], [29], [30]) and EDKSP (edge-disjoint k-shortest

paths) to generate the candidate tunnel set for each ingress-

egress switch pairs, where k ranges from 2 to 6. The ingress

switches can configure the split ratio accordingly.

Experiment Results: As shown in Fig. 2, we first investi-

gate the total cost of each scheme under different routing

algorithms. We can observe that AFHC performs best both in

Geant topology and Nobel-Germany topology, whose cost is

only 14.4% larger than that of OPT on average. The essential

reason is that AFHC is an average of several future time

steps using look-ahead values, which takes fully advantage

of prediction and explores the properties of different routes,

leading to a relatively low cost. SOL may occasionally obtain

the same TE cost as other schemes, but it always ends up with

a higher network update cost. RA lifts the capacity constraint

into the objective function and takes network update cost into

account, leading to reduced total cost. Regarding for RHC and

AFHC, we discovered that even though both of them integrate

the look-ahead information from the prediction window, the

performance is different. AFHC can obtain a better solution,

but it may introduce max{δ} in terms of the regret and

competitive ratio analysis (Theorem 3), which makes the

solution sensitive to prediction errors. On the contrary, RHC

just introduces δ(0) (δ(0) approaches zero as it can be claimed

that the latest prediction is more accurate than a relatively far

prediction) in terms of its regret and competitive ratio analysis

(Theorem 2), where δ is the prediction error.

Fig. 3 shows the maximum link utilization under different

routes. Intuitively, when the link utilization is larger than one,

the congestion may happen. A larger value indicates more

severe congestion in the network. Note that the link utilization

of SOL is always less than one due to the link capacity

constraints. SOL tends to pick the tunnel with the least cost

and thus makes some links heavily loaded. RA, RHC and

AFHC lift the capacity constraints into the objective function

to obtain a stable solution in the long run. Hence, the link

utilization may be slightly larger than one and Theorem 1

claims that the link capacity violation can be bounded. In

Fig. 3(a), we can observe that the link capacity violation is

within 6% for RA, RHC and AFHC. We argue that this can

be acceptable in practice because today’s commercial switches

are deeply buffered [31] and many applications can tolerate

temporary rate reduction [32]. Furthermore, state-of-the-art

transport protocols [33] can detect congestion early with the

additional function in the programmable switch [34] to adjust

sending rate in a fine granularity.

Fig. 4 and Fig. 5 show that the total cost variations with dif-

ferent window sizes. Without loss of generality, we normalize

the value of OPT to one. From Fig. 4 and Fig. 5, we can see

that the window size has no impact on the cost produced from

SOL, RA, and OPT, since their optimizations don’t involve

the prediction window. Obviously, a larger window size can

benefit AFHC significantly, which can perfectly match the

statement in Theorem 3, i.e., the total cost of AFHC decreases

when the prediction window size becomes large. The total

cost of RHC is relatively stable and we can also observe a

weak correlation between the performance and window size as

Theorem 2 claims — the regret of Algorithm 2 is proportional

to δ(0) and cannot be affected by the window size w.

V. RELATED WORK

Optimization in Traffic Engineering: SOL [19] developed

an optimization API that enables the applications to model

the optimization objective and constraints. In terms of perfor-

mance and robustness optimization in TE, Kumar et al. [11]

presented an approach using a set of paths by running Räcke’s
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Fig. 4. Total cost comparisons with different window sizes in Geant topology.
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Fig. 5. Total cost comparisons with different window sizes in Germany-Nobel topology.

oblivious routing [30], and a centralized controller could ac-

cordingly adjust the sending rates. Furthermore, CG4SR [13]

applied the column generation method to the TE optimization.

To tradeoff between the bandwidth consumption and rerouting

overheads, Kuo et al. [14] designed an incremental tree up-

dating algorithm and a multi-tree update scheduling algorithm.

For the node-constrained TE, Trimponias et al. [35] conducted

a rigorous theoretical analysis where the traffic needs to pass

through a set of middleboxes. Tseng et al. [36] investigated

a rate adaptation planning problem under the reconfiguration

delay and introduced the perseverance constraints to handle

the temporary disruption. TeaVaR [12] allowed the operators

to optimize the bandwidth allocation and provide provable

availability, which leveraged the empirical dataset to generate a

probabilistic model in terms of network failures and maximize

the bandwidth allocation to satisfy an operator-specified avail-

ability target. Sentinel [37] aimed to reduce failure-induced

packet losses and integrated fast failover functions into TE.

Network Rerouting in SDNs: SWAN [4] and B4 [3] tried

to determine a congestion-free update plan in inter-datacenter

WANs at the expense of parts of the link capacity. Instead of

seeking for a congestion-free update plan, Zheng et al. [38]

advocated to find an update plan that minimizes the transient

congestion, which can significantly improve the bandwidth uti-

lization. However, it cannot be applied to latency-sensitive data

transfers. Furthermore, Dionysus [16] employed dependency

graphs to determine a fast update plan according to switch

runtime conditions. To reduce the dependency complexity, Cu-

pid [17] divided global update dependencies among switches

into a set of local restrictions to minimize the cost. Another

work by Ludwig et al. [39] aimed to minimizing the number

of interactions when transitioning from the initial to the final

update stage. The authors proved that finding a shortest update

sequence that avoids forwarding loops is NP-hard. Later, they

considered secure network updates [40] in the presence of

middleboxes such as firewalls and NAT.
Though the idea of TE optimization and network update

have surfaced in the literature, the novelty of our work lies in

a comprehensive exploration of the online joint optimization

and a rigorous competitive and regret analysis, which to our

knowledge has not been done before.

VI. CONCLUSION

In this paper, we proposed an online optimization frame-

work for jointly minimizing TE cost and network update

cost in the time horizon. Furthermore, we developed a set of

provable online algorithms and conduct rigorous competitive

and regret analysis. They can handle the cases that the demand

of each flow can be accurately predicted or they have bounded

prediction errors. Finally, extensive evaluations using two

empirical topologies with real dataset demonstrated that our

online algorithms can decrease the total cost and close to the

offline optimum.

APPENDIX

The detailed proof can be found in Fig. 6, Fig. 7 and Fig. 8.
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We denote x∗
p = argminx

∑
p∈P

αp,txp +
T∑

t=1

∑
p∈P

[
βp,t + cdp,t|τ

∑
e∈P

1
Le,t

]
xp and x̂p = argminx

∑
p∈P

αp,txp +
T∑

t=1

∑
p∈P

βp,txp

xRHC
p,τ = argminx

∑
p∈P

[
αp,τ (x− xRHC

p,τ−1)
+
]
+

∑
p∈P

αp,τ+1(xFHC
p,τ+1 − x)+ + (βp,τ + c · dp,τ |τ

∑
e∈P

1
Le,τ

)x

∵ cost(ξt)− cost(ξt−1) =
∑
p∈P

[
αp,t(xRHC

p,t − xRHC
p,t−1)

+
]
+

∑
p∈P

αp,t+1(x∗
p − xRHC

p,t )+ + (βp,t + cdp,t
∑
e∈P

1
Le,t

)xRHC
p,t

− ∑
p∈P

[
αp,t(x∗

p − xRHC
p,t−1)

+ + (βp,t + cdp,t
∑
e∈P

1
Le,t

)x∗
p

]
∴ cost(ξt)− cost(ξt−1)

≤ cost(ξt)− cost(ξt−1) +
∑
p∈P

[
αp,t(x∗

p − xRHC
p,t−1)

+ + αp,t+1(xFHC
p,t+1 − x∗

p)
+
]
+

∑
p∈P

(βp,t + cdp,t|t
∑
e∈P

1
Le,t

)x∗
p

− ∑
p∈P

[
αp,t(xRHC

p,t − xRHC
p,t−1)

+ + αp,t+1(xFHC
p,t+1 − xRHC

p,t )+
]
− ∑

p∈P
(βp,t + cdp,t|t

∑
e∈P

1
Le,t

)xRHC
p,t

≤ ∑
p∈P

{[
c(dp,t − dp,t|t)

∑
e∈P

1
Le,t

]
(xRHC

p,t − x∗
p) + αp,t+1[(xRHC

p,t+1 − x∗
p)

+ + (x∗
p − xRHC

p,t+1)
+]

}
≤ ∑

p∈P

[
cδ(0)

∑
e∈P

1
Le,t

+ αp,t+1

]

Fig. 6. The detailed proof that cost(ξt)− cost(ξt−1) can be bounded.

cost(FHC(τ, τ + w))− cost(STAnew(τ, τ + w))

=
∑
p∈P

[
αp,τ (xFHC

p,τ − xAFHC
p,τ−1 )+ +

τ+w∑
t=τ+1

αp,t(xFHC
p,t − xFHC

p,t−1)
+

]
+

∑
p∈P

τ+w∑
t=τ

(
βp,t + cdp,t

∑
e∈P

1
Le,t

xFHC
p,t

)

−
τ+w∑

t=τ+1

∑
p∈P

{
αp,t[x∗

p(t)− x∗
p(t− 1)]+ +

(
βp,t + cdp,t

∑
e∈P

1
Le,t

x∗
p(t)

)}

≤ cost(FHC(τ, τ + w))− cost(STAnew(τ, τ + w)) +
∑
p∈P

[
αp,τ (x∗

p(τ)− xAFHC
p,τ−1 )+ +

τ+w∑
t=τ+1

αp,t(x∗
p(t)− x∗

p(t− 1))+

]

+
∑
p∈P

τ+w∑
t=τ

(
βp,t + cdp,t|τ

∑
e∈P

1
Le,t

x∗
p(t)

)
− ∑

p∈P

[
αp,τ (xFHC

p,τ − xAFHC
p,τ−1 )+ +

τ+w∑
t=τ+1

αp,t(xFHC
p,t − xFHC

p,t−1)
+

]

− ∑
p∈P

τ+w∑
t=τ

(
βp,t + cdp,t|τ

∑
e∈P

1
Le,t

xFHC
p,t

)

=
∑
p∈P

αp,τ

{
[x∗

p(τ)− xAFHC
p,τ−1 ]+ − [x∗

p(τ)− x∗
p(τ − 1)]+

}
+

τ+w∑
t=τ

∑
p∈P

c(dp,t − dp,t|τ )
∑
e∈p

1
Le,t

[xFHC
p,t − x∗

p(t)]

≤ ∑
p∈P

[
αp,τ +

τ+w∑
t=τ

cδ(t− τ)
∑
e∈p

1
Le,t

]

Fig. 7. The detailed proof that cost(FHC(τ, τ + w))− cost(STAnew(τ, τ + w)) can be bounded.

cost(FHC(τ, τ + w)) ≤ cost(FHC(τ, τ + w)) +
τ+w∑

t=τ+1

∑
p∈P

αp,t(xOPT
p,t − xOPT

p,t−1)
+ +

∑
p∈P

αp,τ (xOPT
p,τ − xAFHC

p,τ−1 )+ +

τ+w∑
t=τ
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Fig. 8. The competitive ratio analysis of Algorithm 3.
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[29] H. Räcke, “Minimizing congestion in general networks,” in FOCS, 2002,

pp. 43–52.
[30] ——, “Optimal hierarchical decompositions for congestion minimization

in networks,” in STOC, 2008, pp. 255–264.
[31] J. Gettys and K. M. Nichols, “Bufferbloat: dark buffers in the internet,”

Communication of the ACM, vol. 55, no. 1, pp. 57–65, 2012.
[32] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, “Inter-datacenter

bulk transfers with netstitcher,” in SIGCOMM, 2011, pp. 74–85.
[33] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,

M. Zhang, F. Kelly, M. Alizadeh, and M. Yu, “HPCC: high precision
congestion control,” in SIGCOMM, 2019, pp. 44–58.

[34] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown,
“Programmable packet scheduling at line rate,” in SIGCOMM, 2016,
pp. 44–57.

[35] G. Trimponias, Y. Xiao, X. Wu, H. Xu, and Y. Geng, “Node-constrained
traffic engineering: Theory and applications,” IEEE/ACM Transactions
on Networking, vol. 27, no. 4, pp. 1344–1358, 2019.

[36] S.-H. Tseng, “Perseverance-aware traffic engineering in rate-adaptive
networks with reconfiguration delay,” in ICNP, 2019, pp. 1–10.

[37] J. Zheng, H. Xu, X. Zhu, G. Chen, and Y. Geng, “Sentinel: Failure
recovery in centralized traffic engineering,” IEEE/ACM Transactions on
Networking, vol. 27, no. 5, pp. 1859–1872, 2019.

[38] J. Zheng, H. Xu, G. Chen, and H. Dai, “Minimizing transient congestion
during network update in data centers,” in ICNP, 2015, pp. 1–10.

[39] A. Ludwig, J. Marcinkowski, and S. Schmid, “Scheduling loop-free
network updates: It’s good to relax!” in PODC, 2015, pp. 13–22.

[40] A. Ludwig, S. Dudycz, M. Rost, and S. Schmid, “Transiently secure
network updates,” in SIGMETRICS, 2016, pp. 273–284.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Nanjing University. Downloaded on June 13,2022 at 12:35:21 UTC from IEEE Xplore.  Restrictions apply. 


		2021-07-22T02:00:46-0400
	Preflight Ticket Signature




