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Abstract—The increasing challenge in designing online algo-
rithms lies in the distribution uncertainty. To cope with the
distribution variations in online optimization, an intuitive idea is
to reselect an algorithm from the candidate set that will be more
suitable to future distributions. In this paper, we propose Ostasos,
an automatic algorithm selection framework that can choose the
most suitable algorithm on the fly with provable guarantees.
Rigorous theoretical analysis demonstrates that the performance
of Ostasos is no worse than that of any candidate algorithms
in terms of competitive ratio. Finally, we apply Ostasos to the
online car-hailing problem and trace-driven experiments verify
the effectiveness of Ostasos.

Index Terms—Online optimization, online learning, online
bipartite matching, deep reinforcement learning

I. INTRODUCTION

Online optimization are ubiquitous in many research fields

such as prediction from expert advice [1], portfolio selection

[2], recommendation systems [3], task assignment [4], etc.
Instead of offline optimization, online optimization problems

need to be solved piece-by-piece in a serial fashion with

limited input information and iteratively make decisions. A

loss may be produced after the decision is committed and our

goal is to minimize the total loss in the long run.

Adversary and independent identically distributed (i.i.d.) are

two major settings when analyzing online algorithms. In the

former, all input information are given by an adversary who

deliberately degrades the performance of the online algorithm.

In the latter, all inputs are sampled from a known or unknown

distribution. However, in practice, the adversary settings are

too pessimistic to navigate the algorithm design space. The

distribution may not be fixed and it can always vary with time.

Hence, we need to design more powerful online algorithms

that can well respond to the potential distribution variations.

Reinforcement learning adapts to dynamic distributions by

learning from the environment restlessly [5], [6], especially

for the inputs with Markov property. However, this usually

leads to inefficient repetitive learning especially when the

distribution changes at first and recovers later. The repetitive

learning procedure can degrade the performance and should be

avoided. Online learning overcome this issue by restarting the

algorithm periodically [7], [8] or “forgetting” old information

gradually [9]. A lot of online algorithms with theoretical

guarantees have been proposed to tackle dynamic distribu-

tions [10]–[12]. But due to the limitation of its simple model,

(i.e., it only exploits the reward of each history action and

cannot explore the influence of inter-actions.) it cannot work

well in complex problems with Markov property. Therefore, it

remains an open problem whether there exists a better online

algorithm that can adapt to the distribution variations.

An intuitive idea is to reselect a more suitable algorithm

after the distribution changes. However, none of the existing

work gives the theoretical guarantee analysis in terms of com-

petitive ratio. In this paper, we initially give a positive answer

to the fundamental problem whether we can dynamically select

different candidate algorithms to solve one online optimization

problem with performance guarantees. To achieve performance

guarantees, which conditions the candidate algorithm set needs

to meet and how to dynamically select the most suitable

candidate one on the fly are two core challenges. For the

first challenge, we derive one necessary condition: the can-

didate algorithm set needs including at least one algorithm

with provable competitive ratio. For the second challenge,

we propose a dynamic restarting policy to re-initialize the

selector algorithm once the distribution changes so that the

most suitable algorithm can be selected from the candidate

set.

Our first contribution is that we propose Ostasos — a

universal algorithm selection framework in response to dy-

namic distributions. Ostasos has three components: a candidate

algorithm set that can tackle a specific online optimization

problem, a selector algorithm that can reselect the most

suitable one from the candidate algorithm set, and a dynamic

restarting policy used to detect the distribution variations. Once

the distribution changes are detected, we restart the selector

algorithm. We prove that, in terms of competitive analysis,

Ostasos can select the fixed single best algorithm.

Our second contribution is that we apply Ostasos to the

online car-hailing problem. We generalize the Batch algo-

rithm [13] to the condition that each vertices’ duration is

unknown and prove that they have provable competitive ratio.

Furthermore, we improve the Batch algorithms with the deep

Q-learning network [5] to produce a complete candidate algo-

rithm set. We prove that the resulting candidate set satisfies

the necessary condition and Ostasos has theoretical guarantee

in the problem.

Our third contribution is that we conduct extensive eval-

uations. We evaluate Ostasos based on a real dataset in

the online car-hailing scenario. The experiment results show

that Ostasos achieves the same performance as the optimal

single algorithms in different periods and outperforms other

algorithm-selecting schemes. The high true positive rate and

low false positive rate of the variation detections validate that

the restarting policy can effectively detect the variations.
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(a) An online bipartite matching problem, where the number inside the vertex
indicates its duration that is unknown to other vertices, and the number
associated with a edge indicates a potential matching value.

(b) The offline optimum, whose total matching value between time 0 and
time 13 is 20.

(c) The resulting matching from a candidate algorithm — Greedy [6], whose
total matching value between time 0 and time 13 is 13.

(d) The resulting matching from a candidate algorithm — Batch [13], whose
total matching value between time 0 and time 13 is 9.

(e) The resulting matching from a candidate algorithm — RQL [6], whose
total matching value between time 0 and time 13 is 13.

(f) The resulting matching from Ostasos that combines RQL, Batch and
Greey, whose total matching value between time 0 and time 13 is 19.

Fig. 1. An online bipartite matching problem and its possible solutions

II. A MOTIVATING EXAMPLE

We start with a motivating example to illustrate the potential

benefits of Ostasos. Online bipartite matching problems can

capture a large number of applications such as taxi-hailing,

ride-sharing and kidney exchange. The vertices in each side

of a bipartite graph arrive and depart over time in an online

manner. Each vertices pair can produce a different matching

value and the objective is to maximize the total matching value

over a finite time horizon. Fig. 1(a) use different colors to

represent the vertices in each side, in which the number inside

the vertex indicates its duration and the number associated

with a edge indicates a potential matching value.

The difficulty lies in that the duration is unknown and

we cannot determine whether there would be another more

suitable vertex for the current matching or not. In Fig. 1(a), the

vertices arrive with unknown duration that makes us difficult

to determine whether we should match the current vertex

immediately or wait for a better choice. Specifically at time 0,

two vertices colored blue and red arrive simultaneously. At this

point, if these two vertices were matched together, we would

obtain one unit matching value. But actually we would obtain a

higher matching value if the vertices were matched as shown

in Fig. 1(b). The offline optimum assumes that the vertices

arriving order and their duration are both known in advanced,

which cannot hold in practice. Yet it can be as a benchmark

to measure the performance of other online algorithms.

Existing work especially Greedy, RQL and Batch can ad-

dress the online bipartite matching problem. All vertices arrive

and depart over the time horizon, which forms a dynamic

bipartite graph. Greedy [6] is an intuitive policy and solve

this problem in a bipartite graph corresponding to current

time point. Greedy will match all vertices in current bipartite

graph directly using Hungarian algorithm [14] to obtain a

local optimal solution, without future knowledge. The resulting

matching is shown in Fig. 1(c). Essentially, Greedy only care

about the current bipartite graph and don’t wait for a potential

better choice in the future. We can totally get 13 unit matching

value when we use Greedy.

Different from Greedy, Batch [13] divides the time horizon

into a sequence of fixed intervals and each newly arrived vertex

cannot be matched until the end of this time interval. This

means that some vertices may be not matched as their duration

may be less than the time interval. At the end of the time

interval, the matching in the bipartite graph can be obtained

by the Hungarian algorithm. In Fig. 1(d), we set the batch size

to be 5. At time 5, Batch matches all survival vertices in the

bipartite graph. Obviously, the certain vertices have already

departed. Similarly, at time 10 and time 15, we determine the

matching among all left vertices in the bipartite graph. The

total matching value is 9 using Batch when the batch size is

5. The results indicate that when the batch size is suitable for

the duration, it can achieve a good result. On the contrary,

when it isn’t suitable for the duration, the performance is bad.

RQL [6] uses Q-learning approach to learn how to choose

a best matching over the time horizon. Actually, it aims to

learn an unknown distribution in nature by the reinforcement
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learning approach. Hence, it inevitably needs some time to

train the model. This may perform perfectly when the real

input can well match the training model. However, it would

perform very bad once the distributions change significantly.

As shown in Fig. 1(e), RQL performs very well at the

beginning and it performs bad after time 4 due to the varying

distributions. The main drawback of RQL is that it costs

large amount of time to learn a new distribution which may

cause huge loss for a long time. The training overhead under

different distributions could degrade the performance. We can

obtain 13 unit matching value between time 0 and time 13

when we use RQL.

Instead of using one single candidate algorithm — Greedy,

Batch or RQL to solve online bipartite matching problem, we

argue that combing their advantages together will produce a

better solution. As shown in Fig. 1(f), if we can use RQL or

Batch algorithm with batch size 2 before time 5 and then

switch to Batch algorithm with batch size 5 after time 5

until time 10, and use Greedy or Batch algorithm with batch

size 1 after time 10, we can get very high total reward, 19,

which is very close to the offline optimum, 20. However, the

central challenge is which conditions the candidate algorithm

set needs to meet and how to dynamically select the most

suitable candidate one on the fly, which is our focus in the

following sections.

III. AN OPTIMIZATION FRAMEWORK

In this section, we propose Ostasos, that can dynamically

select the most suitable candidate algorithm in response to the

changing distributions.

A. Problem Statement and Preliminaries

We use xt ∼ Dt to capture the potential input sampled

from an unknown independent identical distribution Dt for

each t ∈ T . For an online optimization problem, a decision

maker selects a candidate algorithm Ai
t ∈ A at the beginning

of each epoch, and a reward Rxt,At is given to the decision

maker, where we use Rxt
= (Rxt,A1 , Rxt,A2 , ..., Rxt,A|A|)

to denote the reward vector and let Rxt,At
to denote the

reward of At in Rxt
. For convenience, we also use Rt,At

to denote the reward of At at epoch t. Since xt is sampled

from Dt, we use vector μt = (μt,A1 , μt,A2 , ..., μt,A|A|) to

denote the expectation vector of reward at epoch t, in which

μt,A =
∑

xt∼Dt
Pr(xt)Rxt,A where Pr(xt) is the probability

of sampling xt from Dt. Hence, once the distributions of the

future input changes, μt changes. The objective is to maximize

the total expectations of rewards, i.e., maxAt

∑T
t=0 μt,At .

We use our motivating example of online bipartite matching

to explain the notations above. Greedy, Batch, and RQL are

three candidate algorithms in set A. When the vertex comes

and when to leave out have a significant impact on the

performance of online matching. In general, when the duration

is relatively short, the vertex should be matched as soon as

possible and Greedy performs better. On the contrary, if the

vertex can wait for quite a long time, Batch or RQL tends to

make a better decision. At epoch t, the arrived vertices, the

vertices’ duration, and the edges’ weights constitute the input

xt. Since the duration is unknown, xt is partially unknown.

When we pick a specific algorithm A at epoch t, a reward

Rxt,A with expectation μt,A will be incurred.

Here we use competitive ratio to measure the gap between

Ostasos and the offline optimum, while Regret is used to

measure the ability to select an optimal algorithm from A
on the fly. Following [15] and [16], we define algorithm

A’s competitive ratio CR(A) = ρ. For any sequence of

distributions (D1,D2, ...,DT ), we have

T∑
t=1

μt,A ≥ ρ ·
T∑
t

μt,OPT −O(1) (1)

where μt,OPT is the expectation of offline optimum at epoch

t. Note that when A has no competitive ratio guarantee, we

consider ρ = 0. We introduce Static Regret.
Static Regret [17] is the difference between the reward of

actual choices and that of a single optimal choice A∗ in all

epoches,

RegretS = max
A∗

(
T∑
t

μt,A∗ −
T∑
t

μt,At

)

where At is the selected candidate algorithm at each epoch t.
We present a common assumption, which is in line with

that in prior work [18].

Assumption 1. [18] All rewards {Rxt,A} in the reward vector
have an upper bound and lower bound, i.e.,

∀ Dt, and A ∈ A, C ≤ Rxt,A ≤ D

where C and D are constant and greater than zero.

B. Ostasos Design

Ostasos includes an universal framework — Algorithm 1

and a UCB-based selector algorithm — Algorithm 2. We

first show the detailed procedure of Algorithm 1. At first,

we initialize two fixed-size queues, Q0 and Q1, of which the

sizes are l and l/2, respectively (line 1). At the beginning

of every epoch t, a candidate algorithm A ∈ A is obtained

by running Algorithm 2 based on history rewards (line 3). At

the same time, Algorithm 2 obtains the reward. Q0 records

the algorithm-reward pair (At, Rt,At ) in the latest l epochs

(line 4) and the index of this pair is θ, where Q0(θ)(0)
and Q0(θ)(1) denote the candidate algorithm and the reward

respectively. When the length of Q0 reaches l, Algorithm 1

first constructs two temporary reward vectors R′ and R′′ (lines

6). And then Algorithm 1 determines the index θ1 and θ2.

Property 1 can guarantee the existence of θ1 and θ2, which will

be discussed later. Next R′ and R′′ are assigned to Q0(θ1)(1)
and Q0(θ2)(1) (lines 9-10). Note that if a candidate algorithm

is stored more than once during l/2 epoches, the corresponding

reward may not unique in the first half of Q0. At this point,

Algorithm 1 randomly selects one reward to construct R′ or

R′′. Subsequently, Q1 stores the value ‖R′ −R′′‖1 (line 11).

If the length of Q1 reaches l/2, Algorithm 1 fits regression

lines for all the elements in Q1, where the independent variable

and the dependent variable is the index and the corresponding
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element in Q1 respectively (line 12). Under confidence level

1 − α, we obtain the lower confidence bound κ of the fitted

line’s slope (line 14). The detailed calculation procedure can

be found in [19]. At last, when κ > 0, Algorithm 2 needs to

be re-initialized (lines 15-17). The reason is that Algorithm 2

tends to be stable and fails to respond to the distribution

variations when running for a long time [7], [20].

Algorithm 1: Universal Algorithm Framework of Os-

tasos
Input: The candidate algorithm set A; the size of queue l; the

confidence level 1− α
1 Initialize two queues Q0 and Q1 with size l and l

2
, respectively

2 for t = 1; t < T ; t++ do
3 Run Algorithm 2, obtain the candidate algorithm At and its

reward Rt,At

4 Q0.enqueue(At, Rt,At ) %When Q0.length() = l, the
enqueue operation leads to dequeue the oldest element.

5 if Q0.length() = l then
6 Initialize two empty reward vectors, R′ and R′′
7 foreach A ∈ A do
8 Determine the index θ1 (θ1 < l

2
) and θ2 (θ2 ≥ l

2
)

such that Q0(θ1) = Q0(θ2) = (A, ∗) %If θ1 or θ2
is not unique, select one randomly

9 R′
A = Q0(θ1)(1) %R′

A is the reward of A in R′
10 R′′

A = Q0(θ2)(1) %R′′
A is the reward of A in R′′

11 Q1.enqueue(‖R′ −R′′‖1)
12 if Q1.length() =

l
2

then
13 Linear fit elements in Q1 with index as independent

variables and corresponding values as dependent variables
14 Obtain lower confidence bound κ of the fitted line’s slope

with confidence level 1− α [19]
15 if κ > 0 then
16 Restart the Algorithm 2
17 Re-initialize two queues Q0 and Q1

Inspired by [20], we propose a UCB-based selector algo-

rithm shown in Algorithm 2. At the beginning of the first

execution, we initialize t′ = 0, hi(−1) = 0, and qi(0) = 0
(line 1) where t′ is the epoch index, hi(t

′) denotes the total

selected times of Ai at epoch t′ and qi(t
′) is the length of

the virtual queue of Ai. Note that these variables can be re-

initialized when restarting Algorithm 2. If Ai is selected, we

set μi(t
′) as the minimum between the upper confidence bound

of reward and D (lines 3-7). Otherwise, the upper confidence

bound μi(t
′) is set to be D (line 6). For each Ai, we increase

the length of its virtual queue by r−di(t
′−1) where di(t

′−1)
equals to 1 only when Ai is selected at epoch t′ − 1 (line

7). Next Algorithm 2 selects the candidate algorithm with the

maximum sum of l|A|·μj(t
′) and D ·qj(t′) (line 8) and record

the selected algorithm by setting dj(t
′) = 1 (line 9). Once a

candidate algorithm is selected, Algorithm 2 can obtain the

corresponding reward (line 10). Subsequently, for each Ai,

the average reward μ̂i(t
′) and the selected times hi(t

′) would

be calculated (lines 11-13). At the end, we increase t′ by 1

(line 14) and return the selected candidate algorithm and its

reward to Algorithm 1 (line 15).

C. Theoretical Analysis

Before analyzing the performance, we first introduce a

related property for Algorithm 2.

Algorithm 2: UCB-based Selector Algorithm

Input: The candidate algorithm set A; the queue size l; the
minimum selection fraction for each candidate algorithm

r =
|A|
0.5l

; the upper bound of reward D.

Output: The selected candidate algorithm Aj and the reward
Rt′,At′

1 Initialize t′ = 0, hi(−1) = 0 and qi(0) = 0 for each Ai ∈ A
2 for Ai ∈ A do
3 if hi(t

′ − 1) > 0 then
4 μi(t

′) = min
{
μ̂i(t

′ − 1) +D ·
√

3 log t′
2hi(t′−1)

, D
}

%where μ̂i(t
′ − 1) is average reward of Ai in the past

t′ − 1 rounds

5 else
6 Set μi = D

7 qi(t
′) = max{qi(t′ − 1) + r − di(t

′ − 1), 0}; % di ∈ {0, 1}
is an indicator of whether Ai is played or not in t′

8 Set Aj = argmaxAi∈A D · qi(t′) + l|A| · μi(t
′)

9 Set dj(t
′) = 1, and for i �= j, set di(t

′) = 0
10 Run Aj and obtain the reward Rt′,At′
11 for each Ai ∈ A do
12 hi(t

′) =
∑t′

k=0 di(k)

13 μ̂i(t
′) =

∑t′
k=0 Rt′,A

t′
di(k)

hi(t′)

14 t′ ++
15 Return Aj and Rt′,At′ .

Property 1. Algorithm 2 selects each candidate algorithm
at least once during l/2 epochs, i.e., it can guarantee the
existence of θ1 and θ2 defined in line 8 of Algorithm 1 [20].

Based on two properties above, we begin to analyze the

competitive ratio of Algorithm 1.

Theorem 1. The competitive ratio of Algorithm 1 is at least
maxA∈A CR(A)−O

(
RegretS

T

)
, where RegretS is the static

regret of Algorithm 2. When T → ∞ and the static regret of
selector algorithm is sublinear, the competitive ratio is at least
maxA∈A CR(A).

Proof. According to the definition of competitive ratio, the

competitive ratio of Algorithm 1 CR1 = minD
∑T

t=1 μt,A∑T
t=1 μt,OPT

.

Combined the definition of Static Regret, we have

CR1 = min
D

maxA∗
∑T

t=1 μt,A∗ −RegretS∑T
t=1 μt,OPT

Since
∑T

t=1 μt,OPT is linear under Assumption 1 and the

order of static regret is independent of D, we obtain
RegretS∑T
t=1 μt,OPT

= O
(

RegretS
T

)
. Accordingly,

CR1 =min
D

maxA∗
∑T

t=1 μt,A∗∑T
t=1 μt,OPT

−O

(
RegretS

T

)

≥max
A∗ min

D

∑T
t=1 μt,A∗∑T

t=1 μt,OPT

−O

(
RegretS

T

)

=max
A∗ CR(A∗)−O

(
RegretS

T

)

When the static regret of selector algorithm is sublin-

ear, limT→∞ RegretS
T = 0 so that limT→∞ CR1 ≥

maxA∗ CR(A∗).
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Remark: Theorem 1 implies that if the candidate algorithm set

A consists of at least one algorithm with provable competitive
ratio, then Algorithm 1 has competitive ratio guarantee. The

competitive ratio in Theorem 1 indicates that the performance

of Ostasos is affected by both the candidate set and the

selector algorithm: the first term maxA∈A CR(A) denotes the

performance of candidate set; the second term −O
(

RegretS
T

)
denotes the performance of the selector algorithm.

When the distribution keeps unchanged or all changes are

detected, the static regret of Algorithm 2 is sublinear [20].

To obtain a sublinear regret in every situation, classic bandit

algorithms under the adversary setting, like Exp3, can be

simply modified as a selector algorithm. Note that a larger

static regret of Exp3 can lead to a higher order O
(

RegretS
T

)
,

which is why we modify UCB as a default selector algorithm.

Due to the space limitations, we just show the key intuition

to modify Exp3, that is, if there are unselected candidate

algorithms during l−1 epoches, randomly choose one of them

with equal probability; otherwise, run Exp3 directly.

We give the following theorem in a ideal case to explain

why the restarting policy is designed in this way.

Theorem 2. Assume that a change of distribution (Dt0 �=
Dt0+1) is significant enough so that E

(
‖Rxt0

−Rxt0+1‖1
)
≥

E

(
‖Rx′

t0
−Rx′′

t0
‖1

)
, and the probability of selecting each

candidate algorithm A ∈ A keeps unchanged within l epoches.
Under Property 1, the length of Q0 reaches l after t0, then
at epoch t0 + l/2, the expectation of each element in Q1,
E[Q1(λ)], increases when the index λ becomes larger, i.e.

E[Q1(λ)] = η · λ+ β, (2)

where η = E[Q1(l/2)]−β
0.5l > 0, and β is the expectation of the

dequeued element at epoch t0 + l/2. When the distribution
keeps unchanged, E[Q1(λ)] is a constant.

Proof. At epoch t0 + l/2, Q1(λ) is an enqueued element at

epoch t0+λ. At epoch t0+λ, the elements in Q0 ranging from

l−λ to l stem from Dt0+1 and those ranging from 0 to l−λ−1
stem from Dt0 . When we construct R′′ at epoch t0 + λ, R′′

A

stems from either Dt0 or Dt0+1. We introduce R′′
Ai,0 and R′′

Ai,1

to indicate whether R′′
A stems from Dt0 or not. Combining

the analysis above, we can derive Pr[R′′
A stems from Dt0 ] =

1− λ
l/2 and Pr[R′′

A stems from Dt0+1] =
λ
l/2 .

E[Q1(λ)] = E

⎛
⎝ |A|∑

i=1

∣∣R′
Ai −R′′

Ai

∣∣
⎞
⎠

=
l/2− λ

l/2
E

⎛
⎝ |A|∑

i=1

∣∣∣R′
Ai −R′′

Ai,0

∣∣∣
⎞
⎠+

λ

l/2
E

⎛
⎝ |A|∑

i=1

∣∣∣R′
Ai −R′′

Ai,1

∣∣∣
⎞
⎠

=
l/2− λ

l/2
β +

λ

l/2
E[Q1(l/2)]

Replacing η = E[Q1(l/2)]−β
0.5l and rearranging the above equa-

tion, we can derive that Eq. (2) can be established. Since

E
(
‖Rxt0

−Rxt0+1
‖1

)
≥ E

(
‖Rx′

t0
−Rx′′

t0
‖1

)
, we conclude

that E[Q1(l/2)] − β > 0. Obviously, when the distribution

variations keep unchanged, E[Q1(λ)] is a constant.

Remark: Theorem 2 implies that the distribution variations

can lead to a positive slope, but not vise versa. Hence, we

introduce the lower confidence bounds of the slopes to mitigate

the above issue [19], i.e., when the lower confidence bound of

the slope is greater than zero, we assume that the variations

happen. Judging from the lower confidence bound of the slope

is a heuristic method to reduce wrong judgements.

IV. APPLYING OSTASOS TO ONLINE MATCHING

In this section, we apply Ostasos to online bipartite match-

ing problem, where we use batch and deep Q-learning network

approaches to construct our candidate algorithm set.

Online bipartite matching is a classical online optimiza-

tion that can model many practical problems. Here we gener-

alize online bipartite matching to the case that the duration of

each vertex and the weight of each edge can be sampled from

a distribution. If a vertex is not matched during its duration,

this vertex would leave. Succinctly,

Definition 1. (Generalized Online Bipartite Matching,

GOBM). An online bipartite graph is defined as G =
(L,R,E), where L = {i|i ∈ N} and R = {j|j ∈ N} are
the sets of left and right vertices, and E ⊂ L×R is the set of
edges between L and R. The duration of each vertex and the
weight eij of each edge in E is sampled from a distribution D
and E , respectively. The vertices’ arriving frequency is denoted
by the probability of sampling a vertex with non-zero duration
from D. When two vertices are matched, a matching reward
(the edges’ weight) is produced. The objective is to maximize
the total matching reward in G.

In practice, E usually can be measured, while D cannot.

Taking the online car-hailing for example, the reward is

proportional to the measurable trip distance [21] and thus

the reward distribution E is a priori. The accurate waiting

time is hard to predict and thus the duration distribution D
is unknown [22]. However, the type of the waiting time can

be abstracted from history data [22] in the online car-hailing

scenario. The type of the distribution D and the range of its

expectation can be estimated. Now we begin to construct the

candidate algorithm set and apply Ostasos to solve the GOBM

problem especially in the online car-hailing scenario.

Using Batch algorithm to construct candidate algorithm
set. As mentioned in Sec. II, the Batch algorithm transforms

the online bipartite matching problem into a batch partition,

where the batch size is the length of a pre-defined time interval.

Batch size affects the matching quality greatly and the optimal

batch size varies with the different duration distributions.

Theorem 3. For GOBM problem with the distribution D and
E , if the batch size of Batch algorithm is b, the expectation of
the average reward Tb is:

E
(
Tb

)
≥ 1

b

b∑
m=1

b∑
n=1

ξbmξbn

min{m,n}∑
j=1

E

(
max
e∈E′

j

e

)
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where E′
j represents a edge set and ξuv is a probability, both

of which are defined in Appendix A.

The detailed proof can be found in Appendix A.

Remark: For each possible D, according to Theorem 3, we

obtain the optimal batch size b∗, i.e.,

b∗ = argmaxb
1

b

b∑
m=1

b∑
n=1

ξbmξbn

min{m,n}∑
j=1

E

(
max
e∈E′

j

e

)

Based on Theorem 3, the competitive ratios of different

batch sizes can be further analyzed. For convenience, we use

CRb to denote the competitive ratio of the Batch algorithm

with batch size b.

Theorem 4. When the batch size is b, the competitive ratio
of the Batch algorithm has a lower bound:

CRb ≥ min
D

⎛
⎝ 1

bE(T ∗)

b∑
m=1

b∑
n=1

ξbmξbn

min{m,n}∑
j=1

E

(
max
e∈E′

j

e

)⎞
⎠

where E(T ∗) is defined in Lemma 2 in Appendix B, dmax is
the upper bound of the duration, p(d) denotes the probability
of sampling duration d from D, Ck

d =
(
d
k

)
.

The detailed proof can be found in Appendix B.

Using trained-DQNs to construct candidate algorithm
set. Under a specific duration distribution, the matching of

GOBM problem can be formulated as a Markov decision

process [6]. One alternative is to use the deep Q-learning

networks [5], which updates the Q-value as follows.

Q(sγ , aγ)← Q(sγ , aγ) + τ [rγ+1 + ψmax
a

Q(sγ+1, a)−Q(sγ , aγ)]

where subscript γ indicates different time steps, sγ is the state

in γ, aγ is the chosen action, rγ+1 is the obtained reward

after taking action aγ , τ and ψ are two hyper-parameters.

To show how to train a deep Q-learning network for GOBM

problem, we introduce the details. (i) Action Space: the

action aγ ∈ {0, 1} indicates whether we match all survival

vertices or not in time step γ. (ii) Reward: If aγ = 1,

rγ+1 is the produced reward of matching all survival vertices.

Otherwise, rγ = 0. (iii) State Representation: We set the

state sγ = {nl
γ , n

r
γ ,M

′
γ , T

l

γ , T
r

γ} where nl
γ (nr

γ) represent

the number of survival vertices in the left (right) side, M ′
γ

indicates the obtained reward if we choose a matching action,

and T
l

γ (T
r

γ) denote the average survival time of vertices in

the left (right) side.

Based on the input state sγ = {nl
γ , n

r
γ ,M

′
γ , T

l

γ , T
r

γ}, DQNs

decide to match vertices in the bipartite graph or not. After

that, (sγ , aγ , rγ , sγ+1) is stored and used for the training. The

whole training procedure tries to learn from the optimal static

batch size on the fly. Hence, we can use the optimal batch size

at the beginning to further improve the performance.

Applying Ostasos to dynamically choose the candidate
algorithm. Taking Batch algorithms and trained-DQNs as the

candidate algorithms, we can select the candidate algorithm by

running Algorithm 2 and obtain a reward. According to the

records of Q1 in Algorithm 1, we can detect the distribution

variations and restart Algorithm 2 to improve the performance.

Obviously, according to Theorem 1 and Theorem 4, we can

analyze competitive ratio of Ostasos for GOBM problem.

Corollary 1. The competitive ratio of Algorithm 1 for GOBM
problem is at least maxb CRb − O

(
RegretS

T

)
where CRb is

given in Theorem 4.

V. EVALUATION

We evaluate Ostasos with trace-driven experiments in the

online car-hailing scenario.

Setup: The dataset we used comes from Didi Chuxing [23]

published by its GAIA initiative [24]. The data includes the

complete information of online car-hailing problem, i.e., the

passengers’ requests, the drivers’ responses, the waiting time

of passengers, and the cost of the orders. The candidate

algorithm set A in Ostasos is constructed by Batch algorithms

with batch sizes calculated by Theorem 3 and trained-DQNs.

Comparing Ostasos with Single Algorithms. We compare

Ostasos with following benchmark single algorithms:

• Greedy: Greedy only cares about the current reward;

• RQL: RQL uses a restricted Q-learning approach to learn

how to choose the best matching over the time horizon;

• Batch: The batch size of the Batch algorithm here is the

monthly average waiting time in September;

• DQN: DQN used here is the DQN mentioned in Sec. IV

without any previous training and learns from the envi-

ronment continuously;

• Random: Random matches passengers and drivers ran-

domly.

The experiment result is shown in Fig. 2(a), where the tick

label in the horizontal axis, like “09/25”, denotes the time

point 12:00 p.m. in that day. For clarity, we only show the total

rewards in every two hours. We observe that Ostasos achieves

the highest reward in nearly every period. Since Random

matches the graph without considering reward, Random gets

the lowest rewards. However, we observe that RQL sometimes

gets even lower reward than Random, and in Sec. II we have

explained the phenomenon: when distribution sharply changes,

the more RQL learned from the distribution before, the worse

result RQL gets. This issue also occurs in DQN, which causes

DQN to never get the highest reward in our experiment. We

also observe that the Batch algorithm achieves highest rewards

in some periods, while in some other periods (e.g. the noons in

09/25 and 09/26), it gets much lower rewards, which indicates

that a static batch size only suits some distributions, and this

result also aligns with Theorem 3. To reflect how competitive
ratios vary with time, we show the ratios of accumulated

rewards and offline optimum in Fig. 2(b). As time increases,

the ratio of Ostasos first fluctuates and then tends to be stable,

which conforms to Theorem 1. Also, the ratio of Ostasos is

larger than any single algorithms’ ratios.

Comparing Ostasos with Other Algorithm-selecting
Schemes. We compare Ostasos with the following benchmark

schemes:
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Fig. 2. Rewards in every two hours and ratios between accumulated reward and offline optimum
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Fig. 3. Reward and dynamic regret comparisons.
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Fig. 4. Reward and static regret comparisons.

• Ostasos-GRB: The algorithm set A in Ostasos-GRB is

constructed by Greedy, RQL, and Batch algorithm of

which the batch size is the monthly average waiting time

in September, other than that, it is identical to Ostasos;

• UCB [17]: A widely used multi-arms bandit algorithm

where the arms set corresponds to the candidate algorithm

set in Ostasos;

• R-UCB [7]: R-UCB restarts UCB periodically, other than

that, R-UCB is identical to UCB.

Since in a short time the differences among algorithm-

selecting schemes are small, to highlight the differences, in

Fig. 3(a), we show the rewards of each scheme for each day. In

Fig. 3(a), Ostasos-GRB gets the lowest reward in every day. It

indicates that compared with using the pre-existing algorithms

to construct A, using Batch algorithms with different batch

sizes and DQN to construct A as proposed in this paper is

more effective for the GOBM problem. In Fig. 3(a), given

that UCB always gets lower rewards than R-UCB, restarting

policy indeed improves the performance of classical UCB

algorithm when distribution varies with time. Moreover, since

Ostasos achieves higher reward than R-UCB in Fig. 3(a), it

demonstrates that the restarting policy of Ostasos results in a

better performance than the periodically restarting policy does.

To measure the performance of algorithm-selecting schemes

when the distribution varies, we introduce dynamic regrets.

Dynamic Regret [10] is the difference between the reward of

actual choices and that of the optimal choices at each epoch,

RegretD = max
A∗

t

(
T∑
t

Rt,A∗
t
−

T∑
t

Rt,At

)

where At is the selected candidate algorithm at each epoch t,
and A∗

t is the optimal algorithm at each epoch t.
We show the Dynamic Regrets of algorithm-selecting

schemes with same A (i.e. UCB, R-UCB, and Ostasos) in

Fig. 3(b). In Fig. 3(b), the different increasing rates of Dy-
namic Regrets indicate that if the algorithm-selecting scheme

has a restarting policy when distribution varies with time, we

get a lower regret, i.e., the regrets of Ostasos and R-UCB are

much lower than UCB. Obviously, Ostasos achieves a much

lower Dynamic Regret than UCB and R-UCB.

When the distribution is static, comparing to UCB,

algorithm-selecting schemes with restarting policy cause extra

loss. Hence, it is necessary to evaluate the algorithm-selecting

schemes when the distribution is static. In Fig. 4(a), we

evaluate UCB, R-UCB, and Ostasos using a dataset where

the duration distribution keeps unchanged and is based on

the statistics of the real dataset at 10:00 a.m. to 5:00 p.m

(working time). In Fig. 4(a), since UCB never restarts itself

and learns from all history results, the hourly reward gaps

between UCB and other schemes increase; on the contrary,

since R-UCB restarts UCB periodically, it repeats to explore

arms after restarting so that the hourly reward of R-UCB

is lowest. For Ostasos, the restarting policy in Algorithm 1

restarts Algorithm 2 much less often when the distribution is

static so that the reward of Ostasos in every hour is close to

the reward of UCB.

Since the distribution is static, we use Static Regret to

measure the performance of algorithm-selecting schemes. We

show the corresponding Static Regrets of algorithm-selecting

schemes in Fig. 4(b). In the beginning, the increasing rates

of UCB and Ostasos are close, and R-UCB has the fastest

increasing rate, which verifies that the restarting policy causes

extra loss when the distribution keeps unchanged. Then, since

UCB never restarts itself, the increasing rate of UCB’s Static
Regret becomes lower than Ostasos’s. Note that the regret gap

between UCB and Ostasos is much lower than the gap between

UCB and R-UCB, Ostasos has much better performance than

R-UCB when the distribution keeps unchanged.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Nanjing University. Downloaded on June 13,2022 at 12:34:04 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
True positive rates and false positive rates under different confidence levels.

Confidence level (1− α) 95.00% 99.00% 99.50% 99.90%

True positive rate 92.59% 92.31% 88.89% 88.65%
False positive rate 5.14% 3.98% 3.73% 1.82%

The Performance of The Restarting Policy in Ostasos.
We use true positive and false positive rates to evaluate the

restarting policy. Here, the true positive rate is the ratio

between the number of correct restarts and the number of dis-

tribution variations; the false positive rate is the ratio between

the number of wrong restarts and the number of detections

when the distribution is static. Hence, a good restarting policy

requires a high true positive rate and a low false positive rate.

Since the confidence level (1− α) has a significant impact

on the performance of the restarting policy, in Table I, we

show the true positive and false positive rates when we run

Ostasos in the real dataset with different confidence levels.

In Table I, the high true positive rates and low false positive

rates validate the effectiveness of the restarting policy. We also

observe that when confidence level increases, the true positive

and false positive rates decrease, which can be explained

briefly as follows. For a distribution variation, under a higher

confidence level, the lower confidence bound κ of the slope

in Ostasos is smaller than the lower bound under a lower

confidence level so that a slight variation may not be detected

under a high confidence level; similarly, when the distribution

is static, under a higher confidence level, the smaller lower

confidence bounds reduce the wrong restarts. Hence, by tuning

the confidence level, we can control the detection range of

variations of the restarting policy, i.e., if we only need to

recognize considerable variations, a high confidence level

should be set.

VI. RELATED WORK

We briefly review the prior art on non-stationary online

optimization and online bipartite matching.

Non-stationary online optimization: In the non-stationary

online learning problem, [8] considers offline optimal dy-

namic solution and introduces dynamic regret in stochastic

approximation. It has been proved that dynamic regret is

sublinear only if the distribution variations — variation budget
or the times of changes — is bounded [7], [10], [12], [25],

[26]. To solve non-stationary online learning problem, one

alternative is to restart the classical online learning algorithms

periodically, like online gradient descent [8], [25] and bandit
algorithm (UCB) [7]. Instead of restarting algorithm according

to the change of distribution, the restarting policy in above

works just restarts algorithms periodically, which leads to

a lot of unnecessary restarts causing extra loss. Also the

idea of ensemble learning can take advantage of different

algorithms in various environments [1], [18], [27]. However

it is not suitable for the problems in which the setting is

bandit and the candidate algorithms need feedback to update

their parameters. [28] and [11] design an automatic selecting

framework respectively, to select the most suitable one when

network conditions change. Their approaches are specific to

congestion control and resource management.

Online Bipartite Matching: Online bipartite matching

problem can be roughly divided into one-sided and two-sided

online settings. Ranking algorithm [29] is a classical 0.6534-

competitive one-sided online algorithm. Furthermore, the work

in [30] considers two-sided online case and the competitive

ratio is 0.25. This bound is further improved to be 0.47 [4].

Later in [6], a 1
C -competitive two-sided online algorithm is

proposed, where C is an upper bound of vertices’ duration.

The work in [13] generalizes the online bipartite matching to

the arbitrary graph matching.

VII. CONCLUSION

In this paper, we study online optimization problems with

dynamic distributions of variables. To solve this problem, we

propose an automatic algorithm selection framework, Ostasos,

with a provable competitive ratio guarantee. Combining Batch

algorithms and trained-DQNs to construct the algorithm set,

we apply Ostasos in two-sided online bipartite matching

problem in which the duration distribution varies with time.

The evaluation results based on a real dataset demonstrate that

Ostasos can solve two-sided online bipartite matching problem

very well. In the future, we plan to apply Ostasos to solve non-

stationary online optimization problems in other fields.
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APPENDIX

A. Proof of Theorem 3

As the produced reward depends on the bipartite graph at

the matching moment. We use T (m,n) to denote the total

reward using Batch algorithm where m = |L| and n = |R|.
Lemma 1. For the Batch algorithm, there exists a set se-
quence, E′

1, E′
2, · · · , E′

min{m,n}, and satisfies

E[T (m,n)] ≥
min{m,n}∑

j=1

E

(
max
e∈E′

j

e

)

where edge’s weight e ∼ E .

Proof. For convenience, the set of vertices in the left side is

denoted by L = {1, 2, ...,m} and that in the right side is

denoted by R = {1, 2, ..., n}. Without loss of generality, we

assume m ≤ n. This means that all m vertices in the left

side are matched. We describe the following greedy matching

process to construct E′
1, E′

2, · · · , E′
min{m,n}. We first choose

the edge with the largest weight for the first vertex in the

left side. There are n vertices in the right side and the set

E′
1 = {e11, e12, ..., e1n}. Accordingly, the expectation of the

reward is E
(
maxe∈E′

1
e
)
. Assume the matched vertex in the
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right side is i. At this point, there are only n − 1 vertices

in the left side and E′
2 = {e21, ..., e2n} − {e2i}. Likewise,

we can construct E′
3, · · · , E′

min{m,n} one by one. Hence, the

expectation of total reward is
∑m

j=1 E

(
maxe∈E′

j
e
)

.

Certain vertices may be unmatched in one batch and we

use the remain model and the discard model to distinguish

whether the unmatched vertices are included in the next batch

[6]. Accordingly, we denote the total reward under the remain

model by T , and that under discard model by Tdiscard. Since

Tdiscard ≤ T [6], we can analyze the reward under discard

model to bound that in the remain model.

Here we slightly abuse the notation and use q to represent

both the arrival time of a vertex and this vertex itself in GOBM

problem. To estimate the reward in the discard model under a

specific batch size by Lemma 1, we first estimate the number

of vertices at the matching moment. When the deadline of

vertex q is ahead of this matching moment, we call q is out-

of-date. We set Fd(·) =
∑d

j=0 p(j) as probability distribution

function of D where p(j) is the probability that a vertex’s

duration is j. The last matching moment is denoted by σ.

Hence, for the vertex q, the out-of-date probability is Fd(σ+
b − q). And the probability that a vertex arriving at moment

q still survives at the matching moment is 1− Fd(σ+ b− q),
which means the probability distribution is Bernoulli when

q is specified. As 1 − Fd(σ + b − q) changes with q, the

Bernoulli distributions varies at different moments. When the

batch size b is determined, the probability that when u vertices

arrive and v vertices survive at the matching moment is equal

to the probability that the sum of u independent and non-

identical random indicators is v, where each indicator is a

Bernoulli random variable with individual success probability.

When we set the sum of independent and non-identical random

indicators as X and the number of total indicators as Y ,

Pr(v vertices survive|u vertices arrive) = Pr(X = v|Y = u)

Here, we introduce Poisson binomial distribution.

Definition 2. [31] The Poisson binomial distribution is the
distribution of the sum of independent and non-identical ran-
dom indicators. Each indicator follows a Bernoulli distribution
with individual success probability.

Obviously, the numbers of survival vertices at the matching

moment, m and n, obey Poisson binomial distribution. The

probability mass function of Poisson binomial distribution

is first formed by the enumeration method [32]. [33] and

[31] form the closed-form expression of probability mass

function of Poisson binomial distribution. When the number

of variables following different Bernoulli distributions is u and

the sum of u independent and non-identical random indicators

is v, the probability mass function is

ξuv =
1

u+ 1

u∑
s=0

exp(−iωsv)
u∏

j=1

[1− pj + pj exp(iωs)]

where ξuv is the probability that there are v success variables,

ω = 2π/(u+ 1), i =
√
−1, and pj is the success probability.

When batch size is b, pj = Fd(σ + b− j). We can obtain

Pr(v vertices survive|u vertices arrive) = ξuv

Therefore, the expectation of the total reward when the

matching in one batch with size b finishes is

E(Tdiscard) =
b∑

m=1

b∑
n=1

T (m,n)ξbmξbn (3)

Combining Lemma 1, Eq. (3) and Tdiscard ≤ T [6], we

obtain the following inequation which concludes the proof.

E(Tb) ≥
1

b

b∑
m=1

b∑
n=1

ξbmξbn

min{m,n}∑
j=1

E

(
max
e∈E′

j

e

)

B. Proof of Theorem 4

To give a competitive ratio analysis, we need to get an upper

bound of the offline optimal.

Lemma 2. Arbitrarily choose a vertex q with duration d
in the left side, whose arriving time is also denoted as q
for convenience. The set of the vertices in the right side
surviving between the interval [q, q + d] are denoted as Rq .
The maximum reward of matching q is T ∗ = maxj∈Rq eqj .
The expectation of T ∗ is

E(T ∗) =
dmax∑
d=0

dmax∑
i=0

p(d)ξdmax
i

dmax∑
k=0

E

(
max

e∈E′
i+k

e

)

× Ck
d [p(0)]d−k [1− p(0)]k

Proof. The vertices in Rq can be divided into two parts. (i)

the vertices arrive before q and still survive when q arrives.

The number of these vertices is denoted by i. The probability

that there are i survival vertices in right side at q is ξdmax
i ,

where dmax is an upper bound of vertex’s duration. (ii) the

vertices arrive after q and still survive at q + d. The number

of these vertices is denoted by k. k depends on not only

the arriving frequency 1 − p(0), but also q’s duration d.

Once d is determined, the probability distribution of k is

a binomial distribution, i.e., the corresponding probability is

Ck
d [p(0)]

d−k
[1− p(0)]

k
. Since the number of vertices in right

side is k + i, the expectation of the matching reward is

E(maxe∈E′
i+k

e). Based on the analysis above, we conclude

the proof of Lemma 2.

Since E(T ∗) is an upper bound of the expectation of the

reward obtained by matching a pair of vertices, the expectation

of average reward obtained by the offline optimum is

E
(
OPT

)
≤ E(T ∗)

where OPT denotes the offline optimum.

When the batch size is b, the competitive ratio of Batch

algorithm is expressed as

CRb =
E(T /b)

E
(
OPT

) ≥ E(Tb)
E(T ∗)

(4)

Theorem 3, Lemma 2, and Eq. (4) conclude the proof.
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