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ABSTRACT
With the increase of diversity in application needs and networks,

existing congestion control algorithms (CCAs) do not accommodate

this complicated reality. Previous classic CCAs are designed for

a specific domain with fixed rules, failing to adapt to such diver-

sities. Recently surged learning-based CCAs have great potential

in adaptability and flexibility but are not practical due to unsatis-

fying performance on convergence, fairness, overhead and safety

assurance. In this paper, we propose Libra, a unified congestion

control framework, which empowers flexibility, adaptability, and

practicality, by combining the wisdom of classic and reinforce-

ment learning (RL)-based CCAs. Extensive evaluation of Libra’s

Linux kernel implementations on both live Internet and emulated

networks shows performance improvement under dynamic net-

works (e.g., 1.2× throughput than Orca on average). At the same

time, Libra can flexibly satisfy different application needs, reduce

the running overhead by at most 0.92× and perform good fairness

and convergence properties, well-fitting our theoretical analysis.

CCS CONCEPTS
• Networks → Transport protocols; • Computing methodolo-
gies → Reinforcement learning;
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1 INTRODUCTION
Newwaves of technique innovations drive a large number of emerg-

ing applications and make the network infrastructure significantly

more diverse than before. For one thing, emerging applications

require flexible preferences to guarantee high performance. Some

applications such as replication of cloud storage and software down-

loading, are throughput-oriented, while others such as VR/AR and

cloud gaming are delay-sensitive. For another, network communi-

cations are carried through different types of networks (e.g., cellular
networks, WIFI, or optical fiber) and different regions (e.g., intra-
or inter-continental). Hence, a modern CCA should adapt to such

heterogeneity and keep pace with the times.

So far, at least 15 classic CCAs have been incrementally inte-

grated into the Linux kernel [2], with a basic design principle

of connecting possible congestion signals to fixed actions to be

taken [15]. Classic CCAs are pragmatic as a result of their provable

convergence and fairness, predictable behaviors, and negligible

overhead. However, they are not designed to meet evolving ap-

plication demands with a closed interface. Besides, these CCAs

cannot perform well beyond the scope of their domain knowl-

edge, i.e., the throughput-oriented CCAs (e.g., CUBIC), designed
specifically for wired networks, usually perform poorly in cellular

networks [1, 3, 34, 40].

Learning-based CCAs are expected to improve adaptability with

their fully automatic rate calculation procedures. Meanwhile, the

utility function is a potential interface that can be accordingly

tuned to reflect different application needs. But state-of-the-art

learning-based CCAs have not realized these ideal visions yet. First,

their high performance is usually obtained under specific network

environments [9, 20], showing limited adaptability. Their perfor-

mance under wired and cellular scenarios also has room for further

improvement (Sec. 2). Second, offline-trained CCAs [13, 20, 33]

cannot flexibly tune the performance preferences mid-flow since

their preferences are tightly coupled with trained models. Online-

learning CCAs [11, 12] do not focus on application preferences.

Proteus [25] can capture throughput demands but cannot tune

latency preferences. Besides, learning-based CCAs experience un-

satisfying performance in terms of convergence, fairness, overhead,

and safety assurance [2, 28], which hinder large-scale deployments.

Based on the lessons we learned, we summarize three goals that

a modern CCA should possess: (1) Adaptability: achieve high

https://doi.org/10.1145/3485983.3494840
https://doi.org/10.1145/3485983.3494840
https://doi.org/10.1145/3485983.3494840


CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Z.Du, J.Zheng, H.Yu, L.Kong, G.Chen

performance under dynamic networks, including those unseen sce-

narios. (2) Flexibility: adjust performance preferences according

to the application preferences. (3) Practicality: quickly converge to
equilibrium, fairly share the bottleneck bandwidth, provide safety

assurance and achieve acceptable overhead. To satisfy these goals

simultaneously, we propose Libra, a unified framework for con-

gestion control that combines the wisdom of classic and RL-based

CCAs. Libra is motivated by the following observations: (1) Classic

and RL-based CCAs have complementary advantages. RL-based

CCAs have great potential in adaptability and flexibility without

the need to be manually engineered. Classic CCAs can help them

to realize these visions while mitigating their problems in practice.

(2) Two heads are better than one. By evaluating and exploiting a

better action of the two, Libra can become a performance frontier

among all the CCAs.

The differences between Libra and Orca [2], an early attempt of

the combined approach, lie in both the targets and designs. First,

Libra includes the goal of Orca (i.e., address convergence, over-
head, and performance issues of pure learning-based approaches)

as a subset of its objectives. Libra can realize these goals better

while providing many new properties (e.g., theoretical analysis,
safety assurance, flexibility). Second, Orca enables the RL-based

schemes to adjust the base cwnd of CUBIC directly. A key observa-

tion is that the DRL agent of Orca outputs unexpected rate decisions

occasionally, which probably leads to severe performance degra-

dation (Fig. 2(b)). Libra addresses this issue by leveraging a novel

three-stage framework that efficiently evaluates and exploits the

decisions of underlying CCAs. In Libra, the underlying classic CCA

contributes to the properties of inter-protocol fairness and safety as-

surance in practicality. The RL-based CCA boosts the performance

on adaptability. The design of our combined framework has low

overhead, high performance, and provable inter-protocol fairness

and convergence. In particular, our contributions are as follows.

First, we experimentally show the limitations of existing CCAs

and describe the design of Libra in detail with several insights.

Libra utilizes a three-stage control cycle, which (1) explores the

network conditions, (2) evaluates the performance of both classic

and learning-based CCAs using our utility-based framework, and

(3) exploits the previous decision and determines the base sending

rate of the next control cycle. Although the utility-based framework

is similar to PCC [12] in high-level, our novelty lies in re-designing

the algorithm with its rate control component and a comprehensive

exploration of using our combination mechanism. With these im-

provements, Libra presents better adaptability, faster convergence

speed, and lower overhead than PCC.

Second, considering the limited literature on revealing the im-

pact of RL formulation (i.e., the design of reward function, action

space, and state space), we experimentally summarize key observa-

tions about it and accordingly optimize the RL-based component

to improve Libra’s performance. Then we discuss the details on the

smooth integration of the classic CCAs and provide guidelines for

tuning parameters.

Finally, we implement Libra in Linux kernel and evaluate it

with state-of-the-art CCAs in both emulated networks and live

Internet. Experimental results show that Libra can (1) consistently

outperforms the state-of-the-art (e.g., 1.2× throughput than Orca)

in diverse networks, (2) have low sensitivity to the buffer size,

stochastic loss and parameter settings, (3) flexibly tune the perfor-

mance preferences according to the application demands, (4) reduce

around 92% CPU utilization compared with other learning-based

CCAs, (5) maintain Jain’s fairness index over 98% in both inter- and

intra-protocol fairness and quickly converge to a fair share.

2 PRELIMINARIES AND MOTIVATION
In this section, we experimentally show the limitations of existing

CCAs. Experiments are done using Pantheon [38], a community

evaluation platform, with default parameters for candidate CCAs.

Here we use CUBIC as the underlying classic CCA for Libra.

Limitations on adaptability: To evaluate the adaptability of state-
of-the-art CCAs, we deploy a combination of three wired network

traces (24Mbps, 48Mbps, and 96Mbps bandwidth asWired#1∼Wired

#3) and three LTE cellular traces (stationary, walking, and driving

scenarios as LTE#1∼LTE#3) with 30ms minimum RTT and 150KB

buffer. We summarize two observations based on the results shown

in Fig. 1. First, existing classic CCAs cannot adapt to various net-

work conditions. For instance, CUBIC and BBR have bufferbloat and

delay problems in cellular networks due to the throughput-oriented

nature and inaccurate network models [3], respectively. Second, we

observe that Orca and Proteus can reduce the average delay by up

to 60% compared with CUBIC while achieving 8.4%∼13.5% lower

link utilization than classic CCAs in LTE scenarios. We believe that

the state-of-the-art learning-based CCAs still have room for im-

provement (i.e., higher link utilization while remaining low delay).

See Sec. 5.1 for more discussions.
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Figure 1: Adaptability Performance under wired / cellular
networks

Limitations on flexibility: Classic CCAs are hard to dynami-

cally adjust their behaviors in response to the varying application

preferences. On the one hand, the hardwired mapping between

predefined events and actions makes the classic CCAs hard to be

tuned. For instance, it is not feasible to maintain a low queuing

delay for CUBIC without the involvement of AQM schemes (e.g.,
CoDel [27]) which requires changes in the network devices and

incurs extra costs. On the other hand, the interface of adjusting

the application preferences is closed for classic CCAs. Although

learning-based approaches enable this interface to some extent,

they only focus on a specific demand (throughput or delay [3, 25])

and cannot adjust multiple preferences simultaneously.
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Figure 2: Practical issues for existing CCAs.

Limitations on practicality: Classic CCAs always obtain good

practicality. In contrast, no learning-based CCA has been trans-

ferred to real-world production systems due to their practical prob-

lems. To shed light on these problems, we first consider a scenario

whose available capacity changes every 10 seconds (step-scenario)

with an 80ms minimum RTT and 1BDP buffer. From Fig. 2(a), we

can observe that these CCAs cannot converge to the link capacity

perfectly (i.e., 30∼50s for Proteus and 40∼50s for Orca). We attribute

it to (1) the inappropriate DRL decisions of Orca that cannot fully

utilize the available bandwidth when the link capacity (5Mbps) is

beyond the scope of its training environments (6∼192Mbps) and (2)

the lack of agile mechanisms to quickly identify the change of the

equilibrium points for Proteus [2]. Second, we measure the CDF

of link utilization over 100 repeated experiments in an TMobile

LTE cellular network (0∼40Mbps, 30ms RTT, 150KB buffer [3]).

As shown in Fig. 2(b), Orca and Proteus exhibit a highly variable

performance in our repeated experiments, failing to provide safety

assurance. We think that it is caused by the uncertainty of the

decision-making procedure of learning-based components. Third,

the computational overhead is a common concern since learning-

based CCAs usually involve complex computation to make deci-

sions. Here we briefly show the measurement of the normalized

average CPU and memory utilization when sending traffic on the

same TMobile LTE networks as Fig. 2(b) for 60 seconds. Fig. 2(c)

illustrates that existing pure learning-based CCAs have high CPU

and memory overheads (e.g., 88.7% and 10.1% for Proteus, 18.3% and

7.2% for Indigo). Finally, pure learning-based CCAs also perform

poorly in both inter- and intra-protocol fairness (Fig. 13 and Fig. 14).

More details and explanations will be discussed in Sec. 5.3.

Summary: Classic CCAs have good practicality, but are hard to

achieve adaptability and flexibility. Learning-based CCAs can es-

sentially achieve good adaptability, but confront a series of practical

problems. The complementary advantages of classic and learning-

based CCAs motivate us to propose a combined framework. Note

that we use RL because it is sequential and far-sighted, which fits

the sequential decision-making process of CC problems well [1, 24].

3 LIBRA OVERVIEW
On a high level, Libra adopts a utility-based framework to quantify

the performance of different sending rates, which calculates a util-

ity value for each candidate and chooses the best one eventually.

Generally, this utility function includes three critical variables —

throughput, latency, and loss [22] — to capture network conditions,

with an objective of awarding the behavior that leads to lower la-

tency, less loss, and higher throughput [12]. Note that the utility

function plays an important role in maintaining Libra’s conver-

gence and intra-protocol fairness which will be soon discussed in

Sec. 4.1.

Fig. 3 shows a basic control cycle of Libra and it includes an explo-

ration stage, an evaluation stage, and an exploitation stage, where

the lines colored red, violet and green represents the determined

sending rate of classic CCA, learning-based CCA, and the winner

(initial base sending rate) in the last control cycle, respectively. The

solid line indicates the changes in sending rate applied by Libra and

the dashed violet line is suggested by the learning-based CCA.

Basically, at the exploration stage, Libra initially sets the base

sending rate as the winner in the last cycle and follows the classic

CCA to adjust the sending rate. At the same time, the network

feedback information is input into the learning-based CCA and it

works as a backup. At the evaluation stage, Libra tries the sending

rate of the classic CCA and the learning-based CCA one by one

for a while to perform the evaluation. Finally, in the exploitation

stage, Libra uses the initial base sending rate determined in the

last control cycle and waits for the feedback information coming

from the candidate rates in the evaluation stage. By gathering and

transforming the statistics into utility values, Libra chooses the

best sending rate and applies it as a new base sending rate in the

next control cycle. However, for some special cases, Libra senders
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Figure 3: Time-diagram of Libra.

may not receive any ACKs during a decision-making interval as

the network conditions (i.e., available bandwidth, or the number

of competing flows) may change midway, or the ACKs might be

occasionally delayed [2]. Libra handles these cases in different ways.

Specifically, if there is no ACK received during the exploration stage,

Libra will skip the corresponding actions and maintain the same

rate decision 𝑥𝑟𝑙 for the learning-based CCA. While in the case of
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no ACK received in other stages, Libra cannot accurately evaluate

the rate decisions and thus repeatedly use the current base sending

rate 𝑥𝑝𝑟𝑒𝑣 in the next control cycle.

4 LIBRA DESIGN
In this section, we first describe the design of our combined frame-

work in detail. In what follows, we experimentally summarize key

observations about the formulation of RL-based CCA and discuss

the details on the integration of the classic CCAs into Libra.

4.1 Combined framework
Libra’s combined framework includes three stages in its control

cycle and adopts a well-designed utility function to evaluate the

rates from underlying CCAs.

Exploration stage: In this stage, starting with a base sending rate

𝑥𝑝𝑟𝑒𝑣 from the last control cycle, a classic CCA updates the sending

rate of Libra in a per-ACK manner. At the same time, the network

feedback information is input into a learning-based CCA and it

works as a backup in a per-MI manner. Our purpose is to explore the

network conditions from classic CCAs and learning-based CCAs

and complement their own advantages.

When should Libra exit the exploration stage? As shown in

Fig. 3, two cases can trigger Libra to exit the exploration stage — the

divergence between two candidate decisions is large enough (i.e.,
|𝑥𝑟𝑙−𝑥𝑐𝑙 | ≥ 𝑡ℎ) or the maximum duration of the exploration stage is

reached. Both of the cases indicate that it is the moment to evaluate

the decisions from underlying CCAs again, to timely respond to

the changing network conditions.

Evaluation stage: Libra spends two evaluation intervals (EIs) to

resolve the divergences at the evaluation stage. As shown in the

middle of Fig. 3, one EI applies the rate 𝑥𝑐𝑙 from the classic CCA

and the other one applies the rate 𝑥𝑟𝑙 from the learning-based

CCA. At the same time, Libra gathers the network statistics and

calculates a utility value 𝑢 (𝑥𝑝𝑟𝑒𝑣) corresponding to the behavior

in the exploration stage, which is used to compare with 𝑢 (𝑥𝑐𝑙 ) and
𝑢 (𝑥𝑟𝑙 ) at the end of the exploitation stage. Different from the first

stage, Libra no longer calculates the sending rate from both the

classic CCA and the learning-based CCA. This can greatly decrease

the computation overhead by reducing expensive learning-based

calculations, and thus benefit the practicality (Sec. 5.3).

Can Libra mitigate the side effect of different evaluation or-
ders? Note that the evaluation order of the candidate rates should

be carefully decided — an inappropriate evaluation order can result

in a side effect on the final decision. As shown in Fig. 4(a), two can-

didate rates 𝑥𝑐𝑙 and 𝑥𝑟𝑙 are both beyond the available capacity and

without loss of generality, we assume that 𝑥𝑐𝑙 > 𝑥𝑟𝑙 . First trying

𝑥𝑐𝑙 and then 𝑥𝑟𝑙 will lead to 𝑢 (𝑥𝑐𝑙 ) > 𝑢 (𝑥𝑟𝑙 ). Actually, the lower
rate 𝑥𝑟𝑙 is better, whose utility value becomes smaller due to the

produced side effect (increased delay and loss with the accumu-

lated queue) when applying the rate 𝑥𝑐𝑙 first. On a reverse order

— trying 𝑥𝑟𝑙 first and then 𝑥𝑐𝑙 , we can mitigate the side effect and

obtain the right decision. Similar observations can also be found in

Fig. 4(c) and Fig. 4(d). Hence, trying the lower rate first is always a

correct evaluation order. The guideline behind this “lower rate first”

principle is to minimize the self-inflicted side effect from testing

the candidate rates, avoiding wrong decisions. Besides the evalua-

tion orders, the competing background flows and the link capacity

variations can also affect the performance statistics. Libra can react

to this kind of dynamics by exploring the network condition in

the first stage of the next control cycle and accordingly update the

candidate rate decisions.

Exploitation stage: At the exploitation stage, Libra exploits the

sending rate 𝑥𝑝𝑟𝑒𝑣 determined in the last control cycle. Meanwhile,

the feedback (i.e., ACK) of applying candidate rates during the eval-
uation stage return and thus Libra can calculate their utility values

𝑢 (𝑥𝑟𝑙 ) and 𝑢 (𝑥𝑐𝑙 ) at this point. This is why we neatly postpone

the exploitation of 𝑥𝑝𝑟𝑒𝑣 and let it be after the evaluation stage, as

shown in Fig. 3. At the end of the exploitation stage, Libra applies

the sending rate with the highest utility value among the rates

𝑥𝑝𝑟𝑒𝑣 , 𝑥𝑐𝑙 and 𝑥𝑟𝑙 and enters into the next control cycle. In this way,

Libra periodically updates its base sending rate, which ensures that

the performance is no worse than that of both classic and learning-

based CCAs, mitigating the unexpected behaviors of learning-based

CCAs.

Utility function: Libra leverages the utility function to evaluate

the decisions from its underlying CCAs. By default, Libra’s utility

function used in the evaluation stage is:

𝑢 (𝑥𝑖 ) = 𝛼 · 𝑥𝑡𝑖 − 𝛽 · 𝑥𝑖 ·𝑚𝑎𝑥

{
0,
𝑑 (𝑅𝑇𝑇𝑖 )

𝑑𝑡

}
− 𝛾 · 𝑥𝑖 · 𝐿 (1)

where 0 < 𝑡 < 1, the preference parameters 𝛼, 𝛽,𝛾 > 0, 𝑥𝑖 is

the sending rate of sender 𝑖 and 𝐿 is the observed loss rate. We

argue that with reasonable design, Libra can converge to a unique

equilibrium point [10] — each sender maintains a stable and fair

sending rate with maximum utility value.

Theorem 4.1. Convergence and Fairness:Under droptail queue,
𝑛 Libra senders can finally achieve unique Nash equilibrium— a stable
fair share (𝑥1, · · · , 𝑥𝑖 , · · · , 𝑥𝑛) of the bottleneck bandwidth. Formally,
for any sender 𝑖 and any non-negative sending rate 𝑥∗, we can derive
that

𝑢𝑖 (𝑥1, · · · , 𝑥𝑖 , · · · , 𝑥𝑛) > 𝑢𝑖 (𝑥1, · · · , 𝑥∗, · · · , 𝑥𝑛)
where 𝑥1 = 𝑥2 = · · · = 𝑥𝑛 and

∑𝑛
𝑖=1 𝑥𝑖 ≥ 𝐶 .

The proof of Theorem 4.1 roughly consists of two parts. Specifi-

cally, we justify the existence and uniqueness of Nash equilibrium

in the first part and prove that Alg. 1 enables it to converge to this

equilibrium in the second part. Detailed proof can be found in Ap-

pendix A. Note that any utility function that enables the existence

of the unique equilibrium point can be used in Libra’s evaluation

stage without harming the convergence and fairness. A large num-

ber of utility functions, such as those used in PCC series [11, 12, 25]

and Owl [29], all belong to this scope.

Algorithm: At each control cycle, Libra does the following. First,

Libra starts with a base sending rate 𝑥𝑝𝑟𝑒𝑣 , which is obtained from

the last control cycle (line 4). In the first stage, Libra calculates the

sending rate𝑥𝑐𝑙 and𝑥𝑟𝑙 from the learning-based CCA and the classic

CCA, respectively (lines 5-9), and applies 𝑥𝑐𝑙 to the current sending

rate. Before Libra applies the current sending rate, it examines the

difference between 𝑥𝑐𝑙 and 𝑥𝑟𝑙 and decides whether entering into

the evaluation stage in advance or not (lines 10-11). During the

evaluation stage, Libra spends two EIs trying the candidate sending

rate 𝑥𝑐𝑙 and 𝑥𝑟𝑙 one by one, one EI for one candidate rate and the
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Algorithm 1: Libra
Input: the decided sending rate of the previous control

cycle 𝑥𝑝𝑟𝑒𝑣 ; classic CCA𝐶𝐶𝑐𝑙𝑎𝑠𝑠𝑖𝑐 ; current measured

state vector 𝑆𝑡 ; the weight parameters of reward

function𝑤1,𝑤2 and𝑤3; the history length ℎ, the

length of exploration stage 𝑘 , the difference

threshold of the decisions 𝑡ℎ1.

1 foreach control cycle 𝑡 do
2 //Exploration stage

3 for the time in the first 𝑘 estimated RTTs do
4 Initially set the sending rate 𝑥𝑡 as 𝑥𝑝𝑟𝑒𝑣 ;

5 foreach RL’s decision-making interval do
6 𝑥𝑟𝑙 = 𝐷𝑅𝐿_𝑏𝑎𝑠𝑒𝑑 𝐶𝐶𝐴(𝑆𝑡 ,𝑤1,𝑤2,𝑤3, ℎ);
7 foreach Classic CC’s decision-making interval do
8 𝑥𝑐𝑙 = 𝐶𝑙𝑎𝑠𝑠𝑖𝑐_𝐶𝐶𝐴(𝐶𝐶𝑐𝑙𝑎𝑠𝑠𝑖𝑐 , 𝑆𝑡 );
9 Update sending rate with 𝑥𝑐𝑙 ;

10 if |𝑥𝑐𝑙 − 𝑥𝑟𝑙 | ≥ 𝑡ℎ1 then
11 Break, turn to the evaluation stage.

12 //Evaluation stage

13 Try a smaller rate between 𝑥𝑟𝑙 and 𝑥𝑐𝑙 first for one EI.

14 Try the remaining one then for another EI.

15 Collect the performance statistics, calculate utility value

𝑢 (𝑥𝑝𝑟𝑒𝑣).
16 //Exploitation stage

17 for the time in the next 𝑘 estimated RTTs do
18 Send traffic with rate 𝑥𝑝𝑟𝑒𝑣 .

19 Collect the performance statistics corresponding to

𝑥𝑐𝑙 and 𝑥𝑟𝑙 , respectively.

20 //At the end of this control cycle 𝑡 .

21 Calculate the utility value 𝑢 (𝑥𝑐𝑙 ), 𝑢 (𝑥𝑟𝑙 ).
22 𝑥𝑝𝑟𝑒𝑣 =

argmax𝑥𝑝𝑟𝑒𝑣 ,𝑥𝑟𝑙 ,𝑥𝑐𝑙
{𝑢 (𝑥𝑝𝑟𝑒𝑣), 𝑢 (𝑥𝑟𝑙 ), 𝑢 (𝑥𝑐𝑙 )};

23 𝑡 = 𝑡 + 1;

lower rate first (lines 13-14). At the same time, Libra receives the

network feedback and calculates the utility value 𝑢 (𝑥𝑝𝑟𝑒𝑣) (line
15). Finally, Libra uses the sending rate 𝑥𝑝𝑟𝑒𝑣 and calculates two

utility values 𝑢 (𝑥𝑟𝑙 ) and 𝑢 (𝑥𝑐𝑙 ) evaluated before, choosing the rate

that leads to the highest utility as the base sending rate in the next

control cycle (lines 17-23).

4.2 RL-based CCA
We reveal the impact of RL formulation and re-design each com-

ponent in RL-based CCA in order to improve Libra’s overall per-

formance. We use a default setting of 100Mbps, 100ms RTT, and 1

BDP buffer for the following experiments.

State space: State space can represent the outside environment and

we can analyze the benefits attained from previous actions. In this

part, we aim to design a better state space for the RL-based CCA.We

list the state choices attained from previous popular learning-based

CCAs in Tab. 1.

Table 1: State candidates of learning-based CCAs

Index State Candidates

(i) EWMA of the time gap between two sequential ACKs [21, 33]

(ii) EWMA of the timestamp difference between two sequential

packets [2, 21, 33]

(iii) Ratio between the most recent and minimum RTT [20, 21, 33]

(iv) Current sending rate [2, 21, 25, 37]

(v) Ratio between the packets sent and acknowledged [20]

(vi) Current RTT and the minimum RTT [2, 37]

(vii) Average loss rate of packets [2, 25]

(viii) Derivative of latency with respect to time [20, 25, 37]

(ix) Average delivery rate [2, 37]

Based on this, we evaluate the performance of different state

spaces used in previous learning-based CCAs as shown in Fig. 5.

We can observe that the state spaces of DRL-CC and PCC obtain a

higher reward among all these CCAs. Hence, we further explore

the state space used in PCC and DRL-CC and produce a baseline —

state (iv), (vi), (vii), (viii), and (ix) —- by uniting the states of them.

Then we search possible state combinations by using the simulated

annealing algorithm [19] to improve the baseline design. Tab. 2

shows part of our results that are listed in descending order by

rewards — the performance comparisons in terms of normalized re-

wards, throughput, latency, and loss rate respectively when adding

to or removing from states in the baseline. Note that removing the

state (vi) from our baseline produces the best reward among all the

state combinations that we have searched. We find that a new state

space combination (iv), (vii), (viii), and (ix) can better represent the

network conditions and achieve high performance among all the

candidates.
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Table 2: Performance comparisons when adding or removing
states in the Baseline that includes state (iv), (vi), (vii), (viii)
and (ix)

State Reward Throughput Latency Loss

Baseline 0% 0% 0% 0%

-(vi) +5.1% -0.3% -1.1% -4.3%

+(i)(ii) +3.7% -0.7% -1.8% -2.6%

+(i)(ii)(iii) +2.9% -0.3% -0.4% -2.8%

+(ii)(iii)(v)-(iv) +1.1% +2.6% +3.0% -1.5%

+(iii) -9.5% +0.3% +2.3% +7.5%

+(ii) -9.8% +0.4% +2.4% +7.9%

+(i) -12.4% +0.3% +3.1% +9.7%

-(ix) -14.4% -0.2% +2.3% +11.8%

At the same time, when applying this new state space combina-

tion to Libra, we can observe clearly from Fig. 5 that it performs

the best among all the previous CCAs. We also normalize these

statistics in our state space to achieve better generalization. Besides,

considering that the sender can only infer the network statistics

from the observed features [2], we construct the state vector with

several previous states, instead of using just the most recent one,

allowing the sender to capture the dependency in the sequential

data and detect the changes of network conditions [20]. Therefore,

we combine ℎ normalized feature vector 𝑓 and formulate the state

vector as 𝑆 = ⟨𝑓𝑡−ℎ+1, 𝑓𝑡−ℎ+2, · · · , 𝑓𝑡 ⟩.
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Figure 5: The reward comparisons of different CCAs’ state
combinations.

Action space: The action set of RL-based CCAs follows either

AIADmode (e.g., RL-TCP and DRL-CC) or MIMDmode (e.g., Aurora
and Orca

1
). Specifically,

𝑥𝑡+1 = 𝑥𝑡 + 𝑎𝑡 for AIAD

or 𝑥𝑡+1 =

{
𝑥𝑡 · (1 + 𝛿𝑎𝑡 ) if at ≥ 0

𝑥𝑡 / (1 − 𝛿𝑎𝑡 ) otherwise

for MIMD (Aurora)

or 𝑥𝑡+1 = 𝑥𝑡 · 2𝑎𝑡 for MIMD (Orca)
where 𝑎𝑡 indicates the action generated by the DRL agent, 𝛿 is

a scaling factor and we set 𝛿 to 0.025. We evaluate the perfor-

mance of AIAD and MIMD mode with three different scale factors:

𝑠𝑐𝑎𝑙𝑒 = 1 (𝑎𝑡 ∈ [−1, 1]), 𝑠𝑐𝑎𝑙𝑒 = 5 (𝑎𝑡 ∈ [−5, 5]) and 𝑠𝑐𝑎𝑙𝑒 = 10

(𝑎𝑡 ∈ [−10, 10]). As shown in Fig. 6, we can observe that all action

sets can achieve similar rewards (around 1400) except the red line

with a small scale factor 𝑠𝑐𝑎𝑙𝑒 = 1. Specifically, the action set with

1
The action space of Orca is 𝑎𝑡 ∈ [−2, 2] which leads to a MIMD adjustment on the

sending rate ([ 1
4
, 4])
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Figure 6: The reward comparisons of different action space
designs.

AIAD mode consumes more episodes to learn the policy at the

beginning. On the contrary, the action set with MIMD mode learns

the policy faster and can quickly converge to a stable state. Despite

a slight fluctuation of rewards shown in Fig. 6(b), we can mitigate it

with our combined framework and finally choose the MIMD action

space in our RL-based CCA.

Reward function: Here we report two key observations about the

design of reward functions. The first observation is that the loss

rate is a key variable in the reward function, though DRL-CC and

Remy cannot include it. Intuitively, the loss rate is tightly related

to the increasing latency especially under drop-tail queues and one

may argue that just including latency is enough. However, for the

RL-based congestion control shown in Tab. 3, the reward function

without loss rate leads to worse performance (higher latency and

loss). Through deep analysis, we conclude two reasons: (i) RL-based

congestion control adjusts sending rate per MI to collect network

feedback and make decisions, rather than traditional per ACK ad-

justment. Hence, the average RTT used in the reward function

cannot exactly reflect what happened inside an MI. (ii) The utility

function without loss rate cannot work when the queue is full. At

this point, the utility value keeps unchanged even if the RL agent

continues increasing the sending rate.

Table 3: Comparisons with and without the loss rate.

Setting Throughput Latency Loss rate

with loss rate 97.2Mbps 115ms 0.72%

w/o loss rate 98.9Mbps 197ms 37.5%

Next, we provide two options when designing the reward func-

tion — one takes the current reward value 𝑟 and the other uses the

difference Δ𝑟 between two consecutive reward values. Aurora and

Orca appreciate the former design, while RL-TCP prefers the latter.

The reason to take the difference as a reward is that it can better

represent the improvement caused by the corresponding actions.

For example, an action going on to increase its sending rate obtains

a smaller positive reward value 𝑟 but a negative Δ𝑟 in the case of a

near fully-utilized link. The essential reason is that the throughput

in reward functions may keep unchanged but latency and loss rate

become larger. At this point, when using 𝑟 as the final reward, the
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RL agent wrongly encourages this action, leading to poor perfor-

mance in terms of latency and loss rate. Similarly, when new flows

arrive, the previous flows react slowly — they usually continue

to maintain a sending rate close to the bandwidth due to the still

positive 𝑟 , resulting in extreme unfairness [2]. The performance

comparisons using 𝑟 and Δ𝑟 are shown in Tab. 4. We observe that

using Δ𝑟 can improve the performance on average latency and loss

while maintaining a similar high throughput. However, fairness

is a limitation for RL-based CCAs so far and it is hard to signifi-

cantly improve fairness by RL-based CCA itself — this inspires us

to integrate classic CCAs and use a combined approach to improve

fairness.

Table 4: Comparisons using 𝑟 and Δ𝑟 .

Setting Throughput Latency Loss rate Fairness

r 99.4Mbps 173ms 14.7% 0.741

Δ𝑟 98.1Mbps 121ms 0.91% 0.780

Based on the discussions above, we design our RL-based CCA as

shown in Alg. 2. The RL-based CCA takes the collected performance

statistics, the weights of the reward function, and the history length

as the input. It periodically updates the state vector 𝑆𝑡 and calculates

the reward corresponding to the previous action (lines 1-3). By

utilizing the Proximal Policy Optimization (PPO) algorithm [30], it

learns to output a final rate 𝑥𝑟𝑙 (line 4). At the same time, we update

the maximum throughput 𝑥𝑚𝑎𝑥 and the minimum delay 𝑑𝑚𝑖𝑛 for

normalizing the reward (line 6).

Algorithm 2: DRL_based CCA

Input: the current feature 𝑓𝑡 ; the weight parameters𝑤1,𝑤2

and𝑤3; the history length ℎ.

Output: RL decision on sending rate 𝑥𝑟𝑙
1 Update the state vector 𝑆𝑡 = ⟨𝑓𝑡−ℎ, ..., 𝑓𝑡−1⟩ with current

state 𝑓𝑡 ;

2 Obtain the throughput 𝑥𝑡 , delay 𝑑𝑡 and loss rate 𝐿𝑡 from 𝑆𝑡
𝑟𝑡 = 𝑤1𝑥𝑡/𝑥𝑚𝑎𝑥 −𝑤2𝑑𝑡/𝑑𝑚𝑖𝑛 −𝑤3𝐿𝑡 ;

3 𝑅𝑡 = 𝑟𝑡 − 𝑟𝑡−1;
4 𝑥𝑟𝑙 = 𝑃𝑃𝑂 (𝑅(𝑡), 𝑆𝑡 );
5 //PPO is the RL algorithm used in our RL-based CCA.

6 Update 𝑥𝑚𝑎𝑥 and 𝑑𝑚𝑖𝑛

4.3 Classic CCA
As a combined framework, Libra takes the classic CCA as a subrou-

tine (Alg. 1). The challenge is how to integrate classic CCAs without

hurting their own advantages, which involves setting the duration

and the threshold to exit Libra’s exploration stage while unifying

the window-based or rate-based schemes when combining different

CCAs. First, most classic CCAs (e.g., CUBIC) calculate an increase

or a decrease based on the current sending rate, rather than from

the scratch. These CCAs can be easily integrated into Libra with

almost no modifications. We set the exploration stage to one RTT

for them, which enables Libra to explore a wide range of available

bandwidth while quickly reacting to the network dynamics. A spe-

cial case is BBR, which probes the available bandwidth by adjusting

its sending rate to 1.25×, 0.75×, and 1× for six times, with a total

of 8 RTTs. We inherit the first three RTTs from BBR’s control loop

into Libra’s exploration stage since they embody the main function

of the bandwidth probing procedure. Second, the threshold (𝑡ℎ1) is

set to 0.3× base sending rate to cover the bandwidth probing phase

of BBR (±0.25× rate) and react to severe congestion observed by

underlying classic CCAs.

5 EVALUATION
Implementation: The RL-based CCA of Libra is implemented in

user-space, while the classic CCA of Libra is implemented in Linux

kernel and we choose CUBIC (C-Libra) and BBR (B-Libra) due to

their popularity. We adopt two fully-connected hidden layers with

512 neurons on each layer for both the critic and actor networks.

They are trained using the Proximal Policy Optimization (PPO)

algorithm on top of Tensorflow (1.14.0) [18]. The training environ-

ment used for Libra emulates a wide variety of networks with four

parameters: link capacity (10 ∼ 200Mbps), minimum RTT (10 ∼
200ms), buffer size (10KB ∼ 5MB), and stochastic loss rate (0 ∼ 10%).

We randomly reset these network characteristics and start a new

flow when entering a new training episode.

Setup:We evaluate Libra in both emulated networks and live In-

ternet. For the emulation, we use Mahimahi emulator [26] with

Stanford Pantheon [38]. For the real-world evaluation, we create

several Amazon EC2 instances located in Tokyo, Hong Kong, Mum-

bai, Eastern US, and Southern US to transmit data to each other.

The parameters of the utility function [12] are 𝑡 = 0.9, 𝛼 = 1,

𝛽 = 900, and 𝛾 = 11.35, and the weights of the reward function are

𝑤1 = 1,𝑤2 = 0.5,𝑤3 = 10 in the DRL-based CCA. Furthermore, the

duration of each stage for CUBIC is 1 RTT, and that for BBR is 3

RTT, 1 RTT, and 3 RTT, respectively. Detailed analysis about the

choice of parameters is presented in Sec. 7. We compare various

state-of-the-art CCAs with Libra including CUBIC [16], Sprout [6],

Copa [5], BBR [8], Proteus&Vivace [25], Remy [31], Aurora [20]

and Orca [2] and use their default settings in our experiments. We

add another two benchmark CCAs, Clean-Slate Libra (CL-Libra)

and Modified RL (Mod. RL), to emphasize the importance of combi-

nation and show the shortages of solely applying Eq. 1, respectively.

Unless stated otherwise, the results are calculated based on the

average of 5 runs, each lasting for 60 seconds.

5.1 Performance on Adaptability
We report the performance of benchmark CCAs under different

traces, buffer sizes and stochastic loss rates.

Impact of different traces: We use four wired traces (12Mbps,

24Mbps, 48Mbps, and 96Mbps bandwidth), and four LTE traces col-

lected by Pantheon and DeepCC [3] to emulate wired and cellular

networks, respectively. The performance for each CCA is aggre-

gated over wired and cellular networks and the average results are

shown in Fig. 7.We can observe that both C-Libra and B-Libra are lo-

cated close to the top right region of the figure, achieving the Pareto

dominate results. Specifically, Libra shows a significant improve-

ment compared with its underlying CCAs, pure learning-based and

Orca. First, C-Libra achieves a similar throughput (0.97/0.95×) but
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Figure 7: Average throughput and delay on (a) four wired traces and (b) four cellular traces.

far less delay (4.6/3.3× lower) than CUBIC in wired and cellular

scenarios. B-Libra reduces the delay by 30% on average in cellu-

lar networks, while obtaining similar high performance in wired

networks than BBR. Both of them beat the Clean-Slate version and

Modified RL in our experiments. Second, we observe that existing

learning-based CCAs (e.g., Vivace, Proteus, Remy, Indigo, Aurora)

excel in parts of four cellular traces but give a poor performance on

others. Therefore, they do not achieve high performance as shown

in Fig. 7. Besides, the overall throughput of Orca is still below what

Libra obtains in emulated scenarios.

To present the adaptability of Libra in response to the link capac-

ity variations in LTE scenarios, we evaluate Libra with a cellular

trace involving the user movement [3]. As shown in Fig. 8, we

can observe that Libra can perfectly adapt to the dynamic network

capacity. Other benchmark CCAs may either over- or under-utilize

the link capacity (i.e., CUBIC: 20∼30s, Orca: 20∼25s, BBR: 10∼15s)
or even cannot follow the capacity (i.e., Proteus).
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Figure 8: Performance when following the changing link
capacity in LTE networks.

Remark 1: The results shown in Fig. 7 clearly illustrate the ad-

vantages of combining the wisdom of classic CCAs with RL-based

CCAs. Specifically, the good decisions from Libra’s optimized RL

component help Libra outperform its underlying classic CCAs by

controlling the delay better, while those from underlying classic

CCAs in turn improve Libra’s adaptability over pure learning-based

CCAs by handling unseen scenarios better. Besides, Libra realizes

the objective of adaptability better than Orca mainly due to the eval-

uation mechanism in the combined framework, which successfully

avoids Orca’s performance degradation caused by inappropriate

decisions from the DRL component.

Impact of different buffer sizes: Existing CCAs often face the

dilemma between high link utilization and low delay: the deep-

buffered switches can achieve high link utilization, while this in

turn leads to higher delay. We vary the buffer size from 10KB to

1MB in a 60Mbps emulated network with 100ms RTT. As shown

in Fig. 9, when the buffer buildups, the link utilization, and the

average delay for CUBIC increase. BBR also experiences a slightly

higher delay when the buffer is deep. As is expected, Libra shows

a significant improvement and has lower sensitivity to the buffer

size than CUBIC and BBR. Similar to Proteus, Libra can obtain over

80% link utilization with only a 30KB buffer size.

Remark 2: CUBIC periodically fills and drains the buffer, lead-

ing to a higher queuing delay when buffer size increases. Libra

breaks this dilemma via the help of the RL component and com-

bined framework. On the one hand, Libra’s underlying RL-based

CCA can take precautions before filling the buffer. On the other

hand, its combined framework prefers the decisions with lower de-

lay, which prevents Libra from adding the queue length even in the

presence of deep-buffered switches, showing very low sensitivity

to the buffer size.
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Figure 9: Impact of buffer size on performance.

Impact of stochastic packet loss:We further demonstrate that

the stochastic packet loss has aminor impact on the average through-

put for Libra. We vary the stochastic loss rate from 0% to 10% [12].
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As shown in Fig. 10, B-Libra can maintain high link utilization

(81.9%) when the stochastic loss rate is set to 10%. C-Libra also

outperforms both CUBIC and Orca in presence of the stochastic

packet loss.

Remark 3: B-Libra achieves high resilience to stochastic packet

loss since its underlying CCAs do not treat a single loss event

as a congestion indicator. C-Libra can immediately correct the

erroneous reduction caused by the stochastic packet loss with the

help of 𝑥𝑟𝑙 and 𝑥𝑝𝑟𝑒𝑣 , which always results in higher utility value

than that using 𝑥𝑐𝑙 . It is also a more effective mechanism to recover

from the stochastic packet loss than Orca.
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Figure 10: Impact of stochastic loss on performance.

5.2 Performance on Flexibility
We report Libra can provide a flexible trade-off between through-

put and latency by changing the weights of variables. To validate

it, we form five different utility functions: default, Th-1 (2× de-

fault 𝛼), Th-2 (3× default 𝛼), La-1 (2× default 𝛽), La-2 (3× default

𝛽), and use the same emulated networks as that in Fig. 7 to test

their performance. As shown in Fig. 11(a) and Fig. 11(b), Libra can

obtain the expected performance preferences and meet diverse

application requirements. Specifically, Libra can surpass state-of-

the-art CCAs in their strong points — for instance, Libra reaches a

higher throughput than BBR when using throughput-oriented util-

ity functions while achieving lower delay than Orca when changing

to latency-aware utility functions. Then, we evaluate the aggres-

siveness, where Fig. 11(c) and Fig. 11(d) show that one Libra flow

presents different degrees of aggressiveness when competing with

one CUBIC flow. Libra obtain 48.4% ∼ 74.1% (using C-Libra) or

35.5% ∼ 49.6% (using B-Libra) bandwidth whenwe vary the weights

on throughput and latency. Here 50% represents a fair position.

Remark 4: Our combined framework empowers flexibility. To

give intuition, we snapshot Libra’s trace in a control cycle where

𝑥𝑐𝑙 is around 45 Mbps and 𝑥𝑟𝑙 50 Mbps. After applying them one by

one in the evaluation stage, Libra collects the performance statistics

(45𝑀𝑏𝑝𝑠, 120𝑚𝑠, 0%𝑙𝑜𝑠𝑠) and (50𝑀𝑏𝑝𝑠, 150𝑚𝑠, 5%𝑙𝑜𝑠𝑠), respectively.
And the final rate decision depends on the weights of the utility

function — 𝑥𝑟𝑙 will obtain a higher utility value with a throughput-

oriented utility function, while 𝑥𝑐𝑙 will obtain a higher utility value

with a delay-oriented one. In this way, Libra fine-grained tunes

the performance preference according to application preferences,

showing good flexibility.

5.3 Performance on Practicality
We report the performance of benchmark CCAs in terms of over-

head, fairness, convergence properties, and the ability to provide

safety assurance.

Overhead: Here we extend our prior experiments (Fig. 2(c)) by

varying link capacity from 10 Mbps to 200 Mbps. We measure the

average CPU utilization as the metric of overhead. For the CCAs

that are implemented in the kernel, we report the CPU utilization

of iperf [2]. Fig. 12 shows that Libra’s overhead is consistently

comparable with its underlying classic CCAs (CUBIC&BBR) while

showing an average reduction of 47%, 54%, 59%, 79%, 84%, 92% over

Orca, Clean-slate Libra, Modified RL, Indigo, Copa and Proteus,

respectively.

Remark 5: The overhead of Libra, and of other CCAs that involve
RL techniques, mainly comes from their DRL agents [3]. Compared

with other CCAs using DRL agent (Orca, Clean-slate Libra, Mod-

ified RL, etc.), Libra has way lower overhead since its combined

framework enables the costly DRL agent to work only in part of the

control cycle (i.e., exploration stage) to make candidate decisions.

Fairness and convergence: We evaluate the fairness and conver-

gence property of Libra on a 48Mbps link with 100ms minimum

RTT and 1BDP buffer. For inter-protocol fairness, we run two flows

with the most popular CUBIC and the CCA under test, respec-

tively. As for intra-protocol fairness, two senders using the same

CCA are deployed to send traffic on the link. As shown in Fig. 13,

both C-Libra and B-Libra have good inter-protocol fairness, achiev-

ing an over 98% Jain’s fairness index, while pure learning-based

CCAs such as Proteus, Aurora, and Modified RL perform poorly.

Fig. 14 also indicates that Libra achieves improved intra-protocol

fairness (around 99% Jain’s fairness index) than pure learning-based

CCAs.

For the convergence, we start three flows one by one (with an

interval of 5 seconds) using the same CCA. Fig. 15 shows the dy-

namics of each flow’s throughput over time, and the shadow area

represents the link capacity. We quantify the experimental results

shown in Fig. 15 to better argue our performance gains on conver-

gence property. In Tab. 5, the convergence time is calculated as the

time from the third flow’s entry to the earliest time after which it

maintains a stable sending rate (within ±25%) for 5 seconds. The
stability is calculated as the standard deviation of throughput of the

third flow after its convergence [12]. We also report the average

throughput of the third flow after its convergence. We do not cal-

culate these statistics for Modified RL since it cannot converge to a

fair equilibrium in our experiments (Fig. 15). The results show that

Libra can quickly converge to the equilibrium while showing good

stability compared with the underlying classic CCA (i.e., CUBIC
and BBR). Other CCAs may present a long convergence time (e.g.,
CUBIC and Proteus), an under-utilization equilibrium rate (e.g.,
Indigo) or even an unfair share of the link capacity (e.g., Mod. RL).

Remark 6: First, it is known that the goal of inter-protocol fair-

ness (i.e., when competing with CUBIC) is provably incompatible

with the goals of achieving high efficiency and rapid ramp-up[7, 41].

Therefore, we do not expect Libra to outshine all the other CCAs

on inter-protocol fairness, but to avoid starving CUBIC as other

RL-based CCAs (e.g., Aurora). Libra can achieve this goal perfectly.

Besides, Libra’s improvement over Modified RL in Fig. 13 highlights
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Figure 11: Libra’s performance on flexibility.
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Figure 15: Convergence property of different CCAs

the advantage of combining classic CCAs. Second, Libra’s intra-

protocol fairness and convergence derive from both the utility func-

tion of Eq. 1 and the heavily coupled rate control algorithm (Alg. 1).

Therefore, simply applying Eq. 1 (e.g., Modified RL) to RL-based

CCA, whose adjustments lack guarantees on convergence, cannot

perform well on fairness and convergence (Fig. 14, Fig. 15). Besides,

Libra’s rapid convergence and reduced oscillation indicate another

advantage — compared with online-learning approaches, Libra’s

combined framework and the wisdom of underlying CCAs help it

to effectively identify the change of network conditions and quickly

converge to the equilibrium point.

Safety assurance:To quantify the performance on providing safety

assurance, we measure the average link utilization of Orca and

Libra over 20 repeated experiments (i.e., 𝑙𝑖 where 𝑖 ∈ [0, 20]), and
then report the mean value, the range (i.e., 𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛) and the

standard deviation of them in Tab. 6, where #O, #C and #B indicate

Orca, C-Libra and B-Libra, respectively.We can observe that the link

utilization of Libra only fluctuates in a small range (i.e., 3.2%∼11.7%),
while that of Orca is highly variable (i.e., 13.1%∼28.8%). Besides, the

Table 5: Quantitative convergence property of different CCAs

BBR CUBIC Mod. RL Indigo

Conv. Time 6.2s 14.8s - 5.4s

Thr. Deviation 1.81Mbps 5.97Mbps - 1.09Mbps

Avg. Throughput 16.0Mbps 15.9Mbps - 8.2Mbps

Proteus Orca C-Libra B-Libra

Conv. Time 17.2s 7.8s 3.6s 4.1s

Thr. Deviation 2.51Mbps 3.29Mbps 2.17Mbps 1.97Mbps

Avg. Throughput 16.1Mbps 16.0Mbps 15.8Mbps 16.0Mbps

lower standard deviation (i.e., 0.17∼0.52× than Orca) also shows

that the performance of Libra is more reliable.

Remark 7: The property of safety assurance focuses on the per-

formance fluctuation over repeated experiments. Learning-based

CCAs always show a highly variable performance over multiple

runs due to the stochasticity in the learning procedure [17]. Li-

bra can address this issue perfectly — by carefully evaluating the

decisions from underlying CCAs, it avoids the unexpected decisions
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Table 6: Statistics of the link utilization of 20 trials in differ-
ent networks

Wired#1

(24Mbps)

Wired#2

(48Mbps)

LTE#1

(Stationary)

LTE#2

(Moving)

Mean#O 0.891 0.908 0.813 0.876

Mean#C 0.886 0.912 0.897 0.900

Mean#B 0.903 0.917 0.871 0.883

Range#O 0.135 0.249 0.288 0.131

Range#C 0.052 0.080 0.117 0.096

Range#B 0.032 0.044 0.092 0.079

Std dev.#O 0.043 0.098 0.103 0.050

Std dev.#C 0.016 0.021 0.028 0.026

Std dev.#B 0.011 0.017 0.021 0.019

from the DRL agent while leveraging the wisdom of classic CCAs

to achieve safety assurance.

Remark 8: We find that the properties of Libra’s stochastic loss

resilience and inter-protocol fairness are probably changed with

different underlying classic CCAs. However, the provable conver-

gence, predictable behaviors and negligible overhead are always

achieved by Libra due to the general advantages of the classic CCAs.

5.4 Performance on Live Internet
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Figure 16: Normalized performance on live Internet

To investigate Libra’s performance in live Internet, we conduct

experiments on Amazon EC2 platforms. We separately measure the

performance of each CCA in intra- and inter-continental scenarios,

which can cover a wide range of network conditions. We average

the normalized performance of each CCA and the results are shown

in Fig. 16. First, compared with the results reported in Fig. 7, we

can see that Orca and CUBIC significantly drop throughput in our

inter-continental scenarios due to the complexity of these scenar-

ios, e.g., higher stochastic loss rate, different queue management

schemes and traffic shaping schemes unknown to the end-points [2].

C-Libra shows a flexible performance preference on throughput

and delay with different utility functions — it can obtain a 6% higher

throughput (with throughput-oriented version) or 14.4% lower de-

lay (with delay-oriented version) than BBR. B-Libra performs a

similar throughput but 5.6%∼14.8% lower delay than BBR. In the

case of the intra-continental scenarios, Libra also shows a high

performance on throughput and delay, which highlights the good

adaptability of Libra over different network conditions.

5.5 Deep Dive to the Improvements
The fraction of applied times for each candidate rate: To give

a deep dive into the benefits of Libra’s combined framework, we

separately test C-Libra and B-Libra in several scenarios for 50 times

and plot the fraction of applied times among 𝑥𝑝𝑟𝑒𝑣 (the previous

decision), 𝑥𝑟𝑙 (learning-based CCA’s sending rate) and 𝑥𝑐𝑙 (classic

CCA’s sending rate) in Fig. 17. A higher ratio here indicates that

Libra is more likely to take advantage of this kind of rate decisions.

As expected, every kind of rate decisions plays an important

role in adjusting the sending rate. On average, when using CUBIC,

the applied decisions coming from 𝑥𝑝𝑟𝑒𝑣 , 𝑥𝑟𝑙 and 𝑥𝑐𝑙 account for

32%, 26% and 42% of the total number of control cycles, respectively.

The fractions are 23%, 27% and 50% when using BBR. We find that

Libra is more helpful to CUBIC in wired networks (the control

cycles applying 𝑥𝑐𝑙 is significantly less than that in other scenarios)

since it avoids repeated cycles of filling the buffer and the rate

reduction. When using BBR, Libra tends to benefit it in cellular

networks by accelerating the bandwidth probing procedure using

the advice from learning-based CCAs.

Step-Scenario Cellular Wired

0.2

0.3

0.4

0.5

0.6

Fr
ac
tio

n

xprev
xrl
xcl

(a) C-Libra

Step-Scenario Cellular Wired
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
ac
tio

n

xprev
xrl
xcl

(b) B-Libra

Figure 17: Fraction of applied times for 𝑥𝑝𝑟𝑒 , 𝑥𝑟𝑙 and 𝑥𝑐𝑙

Remark 9: From Fig. 17, we can observe that no existing CCA can

perform the best all the time. This reveals the source of Libra’s per-

formance gains to some extent. That is, Libra can outperform each

of the underlying CCAs by periodically selecting the better action

from them. The improvement becomes significant especially un-

der some complex scenarios that a single underlying CCA cannot

perform well.

Compare Libra with ideal combination versions: To verify

the effectiveness of Libra’s combination mechanism, we conduct

experiments to compare Libra with ideal combination versions —

C-Ideal and B-Ideal. To obtain C-Ideal, we run CUBIC and Clean-

Slate Libra individually under the same emulated networks, and

then for each time step, the behaviors from the two with higher

utility values generate it. Hence, C-Ideal is essentially an offline

combined version of CUBIC and Clean-slate Libra, which takes the

one with higher utility value over the time horizon as its own part.

In the same way, we can generate B-Ideal. Note that as an offline

combination, C-Ideal and B-ideal do not involve the interaction

between the classic CCA and the learning-based CCA. To clarify

the source of performance gains, we scale the utility to a normalized

range ([0,1]) and present the results in Fig. 18. We can observe that

both C-Libra and B-Libra obtain high utilities most of the time,

approaching or even surpassing their ideal combined versions (e.g.,
28∼30s and 42∼50s for C-Libra, 15∼23s for B-Libra).
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Figure 18: The utility comparisons in a cellular network.

Remark 10: The experiment results demonstrate that Libra’s com-

bined framework wouldn’t degrade the performance advantages of

each underlying CCA, while it can even gain better performance.

We argue that the improvement comes from the complementary

advantages and interaction between two underlying CCAs. That is,

compared with the ideal combination versions, Libra enables two

underlying CCAs to interact with each other periodically — one

CCA may reset the other CCA’s sending rate via Libra’s evaluation

stage (e.g., the sending rate with higher utility value is preferred).

Though the performance of Libra is good in general, we should

also pay attention to the cases that Libra sometimes earns lower

utility values than that of the ideal version (12∼18s and 31∼37s
for C-Libra, 5∼7s for B-Libra). We leave further optimizations on

Libra’s framework to future work.

6 RELATEDWORK
Classic CCAs:Classic CCAs usually take the loss or RTT variations

as indicators of congestion and react to them with pre-defined poli-

cies [5, 6, 8, 16, 36]. However, loss-based CCAs suffer the notorious

bufferbloat problem [3, 39] and wrong reduction under stochastic

losses [8]. For delay-based CCAs, although stabilization and lower

delay are offered, a series of issues such as severe unfairness may

happen when competing with loss-based CCAs. Besides, classic

CCAs always consider unique features and characteristics for target

networks during the design [8], and thus cannot excel in diverse

network conditions [9].

Learning-based CCAs: Recently, a great deal of effort has been
made to abandon the hardwired mapping between certain events

and certain actions, and allow machines to automatically generate

the best policy by themselves. Some designs, such as Remy [33],

Aurora [20], Eagle [13], and Indigo [38] train a control model offline

with parameterized emulations. Others [12, 25] take online-learning

approaches by using gradient ascent algorithms to optimize the

utility function. However, all these CCAs confront practical prob-

lems in terms of overhead, fairness, or convergence [2]. Besides,

Rotman et al. [28] raise safety concerns about pure learning-based

approaches, while their solution of running multiple RL agents

to infer the unseen scenario in real time inevitably leads to high

overhead.

Combined CCAs: Combining the wisdom of different CCAs to

achieve performance improvements is attractive. Some works adopt

a combination of different congestion signals (i.e., ECN and end-

to-end delay in GEMINI [42]) or different policies to generate

cwnd (e.g., CTCP [32]). Recently, Orca [2] combines RL-based CCA

with CUBIC by periodically using the decisions from the DRL agent

to adjust the rate of CUBIC. Rein [9] switches different CCAs mid-

way according to the run-time environments. Our work is partly

inspired by the above work but more general and practical in both

the designs and the goals.

7 DISCUSSION
How to choose Libra’s parameters? Based on the underlying

classic CCA, the guidance provided by previous works and the

observations from our experimental results, we accordingly set

the default parameters for Libra. First, the duration of the explo-

ration stage and the threshold (𝑡ℎ) in Libra are tuned based on

the underlying classic CCAs (Sec. 4.3). Second, based on the prior

choices (0.5 ∼ 3RTTs) [2, 13, 23, 25], we experimentally evaluate the

impact of EI’s duration in dynamic networks and finally set it to 0.5

estimated RTT. The key observation is that evaluating an improper

decision for a long time harms Libra’s link utilization (Fig. 19). The

duration of the exploitation stage is set to accommodate the ACKs

of the packets that are sent in the evaluation stage while balancing

the desires of fully exploiting the good decisions against the goal

of achieving high responsiveness in highly variable networks. Note

that the appropriate parameter settings for CUBIC and BBR can be

extended to a wide range of classic CCAs (e.g., Westwood, Illinois).

Due to the detailed guidelines and low parameter sensitivity (Ap-

pendix B), we believe that it is also practical to choose parameters

when combining other underlying classic CCAs.

What if we apply Libra to other networks? Currently, Libra is
well tested over wired and cellular networks. Due to the good adapt-

ability (Sec. 5.1), Libra should handle many key characteristics in

other networks including long RTT and high stochastic loss rate

in satellite networks [23], the abrupt fluctuation on available link

capacity in 5G scenarios [35]. Besides, Libra can replace its clas-

sic counterparts with classic CCAs that are designed for specific

networks [4, 22, 35] to leverage new properties (e.g., ECN mark-

ing, hardware timestamp, 5G’s network slicing) and address more

challenges (e.g., incast and extremely low RTT in datacenters). We

leave them for future work.

8 CONCLUSION
In this paper, we present Libra, a combined congestion control

framework to complement the advantages of both classic CCAs and

learning-based CCAs. Libra can adapt to diverse network condi-

tions and adjust performance preferences according to application

demands. Extensive experiments on live internet and Pantheon

clarify the source of performance gains of Libra’s combination

mechanism and demonstrate that Libra can achieve our design

goals of adaptability, flexibility and practicality.
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A PROOF OF THE CONVERGENCE AND
FAIRNESS

Our proof on convergence and fairnessmainly consists of the follow-

ing two parts. The first part proves the existence and uniqueness of

the fair equilibrium based on the choice of the utility function (Eq. 1).

Then we prove that Libra’s rate control algorithm (Alg. 1) enables

Libra to converge to this equilibrium.

A.1 Notations
Consider𝑛 Libra senders compete on a single bottleneck with capac-

ity𝐶 , we assume 𝑥𝑖 is the sending rate of 𝑖𝑡ℎ sender and 𝑆 =
∑𝑛
𝑖=0 𝑥𝑖

is the total sending rate of all senders. Under the droptail queue, we

can derive that (1) if 𝑆 ≥ 𝐶 , the loss rate 𝐿 =

(
1 − 𝐶

𝑆

)
; (2) the RTT

gradient
𝑑 (𝑅𝑇𝑇𝑖 )

𝑑𝑡
= 𝑆−𝐶

𝐶
. Accordingly, the utility function (Eq. 1)

can be described as:

𝑢 (𝑥𝑖 ) = 𝛼 · 𝑥𝑡𝑖 − 𝛽 · 𝑥𝑖 ·max

{
0,
𝑆 −𝐶

𝐶

}
− 𝛾 · 𝑥𝑖 ·

(
1 − 𝐶

𝑆

)
A.2 Existence and uniqueness of equilibrium
Based on the notations above, we formulate this interactive model

as a non-cooperative game𝐺 , in which the Libra senders represent

the players, and the utility function specifies the payoff of strategies.

In general, we have

Lemma A.1. [25] There is no equilibrium when 𝑆 < 𝐶 , which
means that for any equilibrium the total sending rate 𝑆 should be
greater than or equal to the bottleneck capacity 𝐶 .

Specifically, for the utility function we used, we obtain

Lemma A.2. Given the utility function as Eq. 1, there exists a
unique Nash equilibrium for the non-cooperative game𝐺 when 𝑆 ≥ 𝐶 .

Proof. We prove the existence and uniqueness of Nash equilib-

rium by showing that 𝐺 (𝑆 ≥ 𝐶) is strictly socially concave [14].

That is, the game𝐺 should meet the following properties as follows:

(1) each sender 𝑖’s utility function is strictly concave with respect to

its rate 𝑥𝑖 ; (2) each sender 𝑖’s utility function is convex with respect

to the other’s sending rate 𝑥−𝑖 =
∑

𝑗≠𝑖 𝑥 𝑗 ; (3) the total utility value

𝑈 =
∑
𝑖 𝑢 (𝑥𝑖 ) is concave. First, we calculate the second derivative

of 𝑢 (𝑥𝑖 ) as
𝜕2𝑢 (𝑥𝑖 )
𝜕(𝑥𝑖 )2

= 𝛼𝑡 (𝑡 − 1)𝑥𝑡−2𝑖

If 0 < 𝑡 < 1 and 𝛼 > 0, then the second derivative of𝑢 (𝑥𝑖 ) is always
negative, and thus𝑢 (𝑥𝑖 ) is concave with respect to 𝑥𝑖 . Second, since

𝑢 (𝑥𝑖 ) = 𝛼 · 𝑥𝑡
𝑖
− 𝛽 · 𝑥𝑖 𝑥𝑖+𝑥−𝑖−𝐶𝐶

− 𝛾

(
1 − 𝐶

𝑥𝑖+𝑥−𝑖

)
and its second

derivative

𝜕2𝑢 (𝑥𝑖 )
𝜕(𝑥−𝑖 )2

= 𝑐𝑥𝑖
𝐶

𝑆3

is positive. Hence we can conclude that each sender 𝑖’s utility func-

tion is convex with respect to the other’s sending rate 𝑥−𝑖 . Finally,
the sum of the utility values is

𝑈 =
∑︁
𝑖

𝑢 (𝑥𝑖 ) = 𝛼
∑︁
𝑖

𝑥𝑡𝑖 − 𝛽𝑆
𝑆 −𝐶

𝐶
− 𝛾𝑆

(
1 − 𝐶

𝑆

)
.

And its second derivative can be calculated by

𝜕2𝑈 (𝑆)
𝜕𝑆2

=
𝜕2

𝜕𝑆2

(
𝛼

∑︁
𝑖

𝑥𝑡𝑖 − 𝛽𝑆
𝑆 −𝐶

𝐶
− 𝛾𝑆

(
1 − 𝐶

𝑆

))
= 𝛼

𝜕2
∑
𝑖 𝑥

𝑡
𝑖

𝜕𝑆2
− 2𝛽

𝐶
.

Since 0 < 𝑡 < 1, 𝛼 > 0, and 𝑥𝑡
𝑖
is concave, 𝛼

∑
𝑖 𝑥

𝑡
𝑖
is concave as well.

Subsequently, we can obtain that

𝜕2
∑

𝑖 𝑥
𝑡
𝑖

𝜕𝑆2
< 0. For the second term,

remember 𝛽 > 0 and we have − 2𝛽

𝐶
< 0. Therefore,

𝜕2𝑈 (𝑆)
𝜕𝑆2

< 0 and

the total utility value𝑈 (𝑆) is concave. □

Lemma A.3. Given the utility function as Eq. 1, the unique equi-
librium of 𝐺 is fair, where 𝑥1 = 𝑥2 = · · · = 𝑥𝑛 and

∑𝑛
𝑖=1 𝑥𝑖 ≥ 𝐶 .

Proof. First, from Lemma A.1 and Lemma A.2, we can derive

that the game𝐺 has a unique Nash equilibrium. Next, suppose that

a sending rate 𝑥𝑖 is different from another rate 𝑥 𝑗 in the equilibrium,

then we can obtain a different equilibrium by simply exchanging

these two rates, which contradict the Lemma A.2. Therefore, the

unique equilibrium of the game𝐺 is fair. Last, suppose that

∑𝑛
𝑖=1 𝑥 <

𝐶 . In such a case, each Libra sender can increase its sending rate 𝑥𝑖
without incurring the packet loss, which leads to a higher utility

value. This contradicts the definition of the Nash equilibrium and

concludes our proof.

□

A.3 Ability to converge to the fair equilibrium.
The utility function ensures the existence and uniqueness of the

equilibrium. Now we begin to analyze how Libra can reach this

equilibrium. Without loss of generality, we consider that two Li-

bra senders (say 𝑖 and 𝑗 ) compete on a single bottleneck, where the

equilibrium rate is 𝑥 and the underlying classic CCA is CUBIC. Note

that any classic CCA with provable convergence can also make our

Libra reach the equilibrium point.

Lemma A.4. The rate control algorithm (Alg. 1) enables Libra to
converge to the fair equilibrium.

Proof. We prove Lemma A.4 by showing that in all conditions

Libra can adjust its sending rate towards the equilibrium rate.

(i): 𝑆 < 𝐶.We first prove that Libra senders will continue to increase

their rates𝑥𝑖 and𝑥 𝑗 in the under-utilization case ( i.e.,𝑥𝑖 < 𝑥 𝑗 < 𝑥 or

𝑥𝑖 < 𝑥 < 𝑥 𝑗 ). This is because, before fully utilizing the link capacity,

the underlying classic CCA (i.e., CUBIC) will increase its rate 𝑥𝑐𝑙 .
In such cases, a higher rate between 𝑥𝑐𝑙 and 𝑥𝑟𝑙 is preferred due to

the higher utility value obtained. This ensures a rapid increase of

Libra’s base sending rate in the presence of available capacity.

(ii): 𝑆 > 𝐶. Under this condition, we claim that Libra can quickly

decrease its sending rate and move to the equilibrium point. First,

the decisions from classic CCAs always drive Libra towards a lower

sending rate (i.e., 𝑥𝑖 · [ where [ < 1) after detecting congestion. At

https://doi.org/10.1145/2785956.2787498
https://doi.org/10.1145/2785956.2787498
https://doi.org/10.1145/3152434.3152445
https://doi.org/10.1145/3152434.3152445
https://doi.org/10.1109/ICNP.2019.8888042
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the same time, RL-based CCA observes a similar state vector and

outputs the same decision with its MIMD action space (i.e., 𝑥𝑡
𝑖
· \

or 𝑥𝑡
𝑗
· \ ). We claim that the difference in the next control cycle

𝑡 + 1 between the base sending rate 𝑥𝑡+1
𝑖

and 𝑥𝑡+1
𝑗

is smaller than or

equal to the current difference |𝑥𝑡
𝑖
− 𝑥𝑡

𝑗
|. Here we consider three

possible adjustments of Libra: (1) Libra chooses decisions of the

classic CCA, we can derive 𝑥𝑡+1
𝑖

− 𝑥𝑡+1
𝑗

= 𝑥𝑡
𝑖
· (1 − [) − 𝑥𝑡

𝑗
· (1 −

[) = (1 − [) · (𝑥𝑡
𝑖
− 𝑥𝑡

𝑗
) and (1 − [) (𝑥𝑡

𝑖
− 𝑥𝑡

𝑗
) < 𝑥𝑡

𝑖
− 𝑥𝑡

𝑗
, where

0 < [ < 1; (2) Libra chooses decisions of the RL-based CCA, we

can derive 𝑥𝑡+1
𝑖

− 𝑥𝑡+1
𝑗

= 𝑥𝑡
𝑖
· \ − 𝑥𝑡

𝑗
· \ = \ · (𝑥𝑡

𝑖
− 𝑥𝑡

𝑗
), and also

\ · (𝑥𝑡
𝑖
− 𝑥𝑡

𝑗
) < (𝑥𝑡

𝑖
− 𝑥𝑡

𝑗
), where 0 < \ < 1. When \ > 1, the

decisions of the RL-based CCA will gain a lower utility value and

thus cannot be selected. (3) remain the same sending rate as before,

and then the difference remains unchanged as well. The decision

that obtains a higher utility value is consistent among all senders.

As a result, it is impossible to select one decision from the RL-based

CCA for the sender 𝑖 and the other decision from the classic CCA

for the sender 𝑗 .

(iii): 𝑆 = 𝐶. Suppose that 𝑥𝑖 ≠ 𝑥 𝑗 . Under this condition, each

Libra sender may obtain a higher utility value and turn to case

(ii) by increasing its sending rate. Otherwise, the current sending

rates of 𝑥𝑖 and 𝑥 𝑗 form an equilibrium, which is a contradiction to

Lemma A.3.

□

B PARAMETER SENSIBILITY
We change the duration of each stage and the threshold 𝑡ℎ1 under

the same emulated networks as that in Fig. 7. We report the perfor-

mance in Fig. 19 and Tab. 7. The experimental results well match our

analyses that: (1) longer exploration and exploitation stages result

in significant degradation of link utilization (4.4% on average) in

highly varying cellular links. (2) evaluating an improper candidate

rate for a long time (i.e., tune EI from 0.5 to 1 RTT) harms the link

utilization. (3) Libra shows low sensitivity to different parameters

and our default settings are appropriate.
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Figure 19: Avg. Performance of C-Libra under different dura-
tion of stages

When enlarging the duration, the performance degradation in

a highly varying scenario (e.g., cellular networks) is attributed to

its slower reaction to network dynamics. But for the scenario with

more stable network characteristics (e.g., our emulatedwired scenar-

ios), a longer duration is more appropriate, since it can well exploit

the good decisions with less unnecessary attempts to explore.

Table 7: Avg. Performance of C-Libra under different switch-
ing thresholds

Configuration Link utilization Avg. delay(ms)

Wired-0.1× 87.7% 43.2

Wired-0.2× 88.6% 43.2

Wired-0.3× 88.9% 43.5

Wired-0.4× 89.0% 44.4

Cellular-0.1× 81.7% 67.0

Cellular-0.2× 82.7% 61.8

Cellular-0.3× 83.6% 57.0

Cellular-0.4× 83.1% 56.3
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